Home






SCHEME OF WORK
Mathematics
Form 3 2025
TERM III
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1

SCHOOL OPENING AND REVISION OF END TERM EXAM

2 1
Commercial Arithmetic
Simple interest
By the end of the lesson, the learner should be able to:
Calculate simple interest
Apply simple interest formula
Solve basic interest problems
Q/A on interest concepts and terminology
Discussions on principal, rate, and time
Solving basic simple interest problems
Demonstrations of formula application
Explaining interest calculations
Calculators, simple interest charts
KLB Mathematics Book Three Pg 98-99
2 2
Commercial Arithmetic
Simple interest
Compound interest
By the end of the lesson, the learner should be able to:
Calculate simple interest
Solve complex simple interest problems
Apply simple interest to real-world situations
Q/A on advanced simple interest concepts
Discussions on practical applications
Solving complex interest problems
Demonstrations of real-world scenarios
Explaining business applications
Calculators, real-world problem sets
Calculators, compound interest tables
KLB Mathematics Book Three Pg 98-101
2 3
Commercial Arithmetic
Compound interest
By the end of the lesson, the learner should be able to:
Calculate the compound interest
Solve advanced compound interest problems
Compare simple and compound interest
Q/A on advanced compounding scenarios
Discussions on investment comparisons
Solving complex compound problems
Demonstrations of comparison methods
Explaining investment decisions
Calculators, comparison worksheets
KLB Mathematics Book Three Pg 102-107
2 4
Commercial Arithmetic
Appreciation
By the end of the lesson, the learner should be able to:
Calculate the appreciation value of items
Apply appreciation concepts
Solve appreciation problems
Q/A on appreciation concepts
Discussions on asset value increases
Solving appreciation calculation problems
Demonstrations of value growth
Explaining appreciation applications
Calculators, appreciation examples
KLB Mathematics Book Three Pg 108
2 5
Commercial Arithmetic
Depreciation
Hire purchase
By the end of the lesson, the learner should be able to:
Calculate the depreciation value of items
Apply depreciation methods
Solve depreciation problems
Q/A on depreciation concepts and methods
Discussions on asset value decreases
Solving depreciation calculation problems
Demonstrations of depreciation methods
Explaining business depreciation
Calculators, depreciation charts
Calculators, hire purchase examples
KLB Mathematics Book Three Pg 109
2 6
Commercial Arithmetic
Hire purchase
By the end of the lesson, the learner should be able to:
Find the hire purchase
Solve complex hire purchase problems
Calculate total costs and interest charges
Q/A on advanced hire purchase scenarios
Discussions on complex payment structures
Solving challenging hire purchase problems
Demonstrations of cost analysis
Explaining consumer finance decisions
Calculators, complex hire purchase worksheets
KLB Mathematics Book Three Pg 110-112
2 7
Commercial Arithmetic
Income tax and P.A.Y.E
By the end of the lesson, the learner should be able to:
Calculate the income tax
Calculate the P.A.Y.E
Apply tax calculation methods
Q/A on tax system concepts
Discussions on income tax and P.A.Y.E systems
Solving tax calculation problems
Demonstrations of tax computation
Explaining taxation principles
Income tax tables, calculators
KLB Mathematics Book Three Pg 112-117
3 1
Sequences and Series
Introduction to sequences and finding terms
General term of sequences and applications
By the end of the lesson, the learner should be able to:
Define sequences and identify sequence patterns
Find next terms using established patterns
Recognize different types of sequence patterns
Apply pattern recognition systematically
Q/A on number patterns from daily life
Discussions on counting patterns using classroom arrangements
Solving pattern completion problems step-by-step
Demonstrations using bead or stone arrangements
Explaining sequence terminology and pattern continuation
Chalk and blackboard, stones or beans for patterns, exercise books
Chalk and blackboard, numbered cards made from paper, exercise books
KLB Mathematics Book Three Pg 207-208
3 2
Sequences and Series
Arithmetic sequences and nth term
By the end of the lesson, the learner should be able to:
Define arithmetic sequences and common differences
Calculate common differences correctly
Derive and apply the nth term formula
Solve problems using arithmetic sequence concepts
Q/A on arithmetic patterns using step-by-step examples
Discussions on constant difference patterns and formula derivation
Solving arithmetic sequence problems systematically
Demonstrations using equal-step progressions
Explaining formula structure using algebraic reasoning
Chalk and blackboard, measuring tape or string, exercise books
KLB Mathematics Book Three Pg 209-210
3 3
Sequences and Series
Arithmetic sequence applications
By the end of the lesson, the learner should be able to:
Solve complex arithmetic sequence problems
Apply arithmetic sequences to real-world problems
Handle word problems involving arithmetic sequences
Model practical situations using arithmetic progressions
Q/A on practical applications using local business examples
Discussions on salary progression and savings plans
Solving real-world problems using sequence methods
Demonstrations using employment and finance scenarios
Explaining practical interpretation using meaningful contexts
Chalk and blackboard, local employment/savings examples, exercise books
KLB Mathematics Book Three Pg 209-210
3 4
Sequences and Series
Geometric sequences and nth term
Geometric sequence applications
By the end of the lesson, the learner should be able to:
Define geometric sequences and common ratios
Calculate common ratios correctly
Derive and apply the geometric nth term formula
Understand exponential growth patterns
Q/A on geometric patterns using multiplication examples
Discussions on ratio-based progressions and formula derivation
Solving geometric sequence problems systematically
Demonstrations using doubling and scaling examples
Explaining exponential structure using practical examples
Chalk and blackboard, objects for doubling demonstrations, exercise books
Chalk and blackboard, population/growth data examples, exercise books
KLB Mathematics Book Three Pg 211-213
3 5
Sequences and Series
Arithmetic series and sum formula
By the end of the lesson, the learner should be able to:
Define arithmetic series as sums of sequences
Derive the sum formula for arithmetic series
Apply the arithmetic series formula systematically
Calculate sums efficiently using the formula
Q/A on series concepts using summation examples
Discussions on sequence-to-series relationships and formula derivation
Solving arithmetic series problems using step-by-step approach
Demonstrations using cumulative sum examples
Explaining derivation logic using algebraic reasoning
Chalk and blackboard, counting materials for summation, exercise books
KLB Mathematics Book Three Pg 214-215
3 6
Sequences and Series
Geometric series and applications
By the end of the lesson, the learner should be able to:
Define geometric series and understand convergence
Derive and apply geometric series formulas
Handle finite and infinite geometric series
Apply geometric series to practical situations
Q/A on geometric series concepts using multiplication examples
Discussions on convergence and formula applications
Solving geometric series problems including infinite cases
Demonstrations using geometric sum patterns
Explaining convergence using practical examples
Chalk and blackboard, convergence demonstration materials, exercise books
KLB Mathematics Book Three Pg 216-219
3 7
Sequences and Series
Mixed problems and advanced applications
Sequences in nature and technology
By the end of the lesson, the learner should be able to:
Combine arithmetic and geometric concepts
Solve complex mixed sequence and series problems
Apply appropriate methods for different types
Model real-world situations using mathematical sequences
Q/A on problem type identification using systematic analysis
Discussions on method selection and comprehensive applications
Solving mixed problems using appropriate techniques
Demonstrations using interdisciplinary scenarios
Explaining method choice using logical reasoning
Chalk and blackboard, mixed problem collections, exercise books
Chalk and blackboard, natural and technology examples, exercise books
KLB Mathematics Book Three Pg 207-219
4 1
Vectors (II)
Coordinates in two dimensions
By the end of the lesson, the learner should be able to:
Identify the coordinates of a point in two dimensions
Plot points on coordinate planes accurately
Understand position representation using coordinates
Apply coordinate concepts to practical situations
Q/A on coordinate identification using grid references
Discussions on map reading and location finding
Solving coordinate plotting problems using systematic methods
Demonstrations using classroom grid systems and floor patterns
Explaining coordinate applications using local maps and directions
Chalk and blackboard, squared paper or grid drawn on ground, exercise books
KLB Mathematics Book Three Pg 221-222
4 2
Vectors (II)
Coordinates in three dimensions
By the end of the lesson, the learner should be able to:
Identify the coordinates of a point in three dimensions
Understand the three-dimensional coordinate system
Plot points in 3D space systematically
Apply 3D coordinates to spatial problems
Q/A on 3D coordinate understanding using room corner references
Discussions on height, length, and width measurements
Solving 3D coordinate problems using systematic approaches
Demonstrations using classroom corners and building structures
Explaining 3D visualization using physical room examples
Chalk and blackboard, 3D models made from sticks and clay, exercise books
KLB Mathematics Book Three Pg 222
4 3
Vectors (II)
Column and position vectors in three dimensions
Position vectors and applications
By the end of the lesson, the learner should be able to:
Find a displacement and represent it in column vector
Calculate the position vector
Express vectors in column form
Apply column vector notation systematically
Q/A on displacement representation using movement examples
Discussions on vector notation using organized column format
Solving column vector problems using systematic methods
Demonstrations using physical movement and direction examples
Explaining vector components using practical displacement
Chalk and blackboard, movement demonstration space, exercise books
Chalk and blackboard, origin marking systems, exercise books
KLB Mathematics Book Three Pg 223-224
4 4
Vectors (II)
Column vectors in terms of unit vectors i, j, k
By the end of the lesson, the learner should be able to:
Express vectors in terms of unit vectors
Convert between column and unit vector notation
Understand the standard basis vector system
Apply unit vector representation systematically
Q/A on unit vector concepts using direction examples
Discussions on component representation using organized methods
Solving unit vector problems using systematic conversion
Demonstrations using perpendicular direction examples
Explaining basis vector concepts using coordinate axes
Chalk and blackboard, direction indicators, unit vector reference charts, exercise books
KLB Mathematics Book Three Pg 226-228
4 5
Vectors (II)
Vector operations using unit vectors
By the end of the lesson, the learner should be able to:
Express vectors in terms of unit vectors
Perform vector addition using unit vector notation
Calculate vector subtraction with i, j, k components
Apply scalar multiplication to unit vectors
Q/A on vector operations using component-wise calculation
Discussions on systematic operation methods
Solving vector operation problems using organized approaches
Demonstrations using component separation and combination
Explaining operation logic using algebraic reasoning
Chalk and blackboard, component calculation aids, exercise books
KLB Mathematics Book Three Pg 226-228
4 6
Vectors (II)
Magnitude of a vector in three dimensions
Magnitude applications and unit vectors
By the end of the lesson, the learner should be able to:
Calculate the magnitude of a vector in three dimensions
Apply the 3D magnitude formula systematically
Find vector lengths in spatial contexts
Solve magnitude problems accurately
Q/A on 3D magnitude using extended Pythagorean methods
Discussions on spatial distance calculation using 3D techniques
Solving 3D magnitude problems using systematic calculation
Demonstrations using 3D distance examples
Explaining 3D magnitude using practical spatial examples
Chalk and blackboard, 3D measurement aids, exercise books
Chalk and blackboard, direction finding aids, exercise books
KLB Mathematics Book Three Pg 229-230
4 7
Vectors (II)
Parallel vectors
By the end of the lesson, the learner should be able to:
Identify parallel vectors
Determine when vectors are parallel
Apply parallel vector properties
Use scalar multiples in parallel relationships
Q/A on parallel identification using scalar multiple methods
Discussions on parallel relationships using geometric examples
Solving parallel vector problems using systematic testing
Demonstrations using parallel line and direction examples
Explaining parallel concepts using geometric reasoning
Chalk and blackboard, parallel line demonstrations, exercise books
KLB Mathematics Book Three Pg 231-232
5 1
Vectors (II)
Collinearity
By the end of the lesson, the learner should be able to:
Show that points are collinear
Apply vector methods to prove collinearity
Test for collinear points using vector techniques
Solve collinearity problems systematically
Q/A on collinearity testing using vector proportion methods
Discussions on point alignment using vector analysis
Solving collinearity problems using systematic verification
Demonstrations using straight-line point examples
Explaining collinearity using geometric alignment concepts
Chalk and blackboard, straight-line demonstrations, exercise books
KLB Mathematics Book Three Pg 232-234
5 2
Vectors (II)
Advanced collinearity applications
Proportional division of a line
By the end of the lesson, the learner should be able to:
Show that points are collinear
Apply collinearity to complex geometric problems
Integrate parallel and collinearity concepts
Solve advanced alignment problems
Q/A on advanced collinearity using complex scenarios
Discussions on geometric proof using vector methods
Solving challenging collinearity problems
Demonstrations using complex geometric constructions
Explaining advanced applications using comprehensive examples
Chalk and blackboard, complex geometric aids, exercise books
Chalk and blackboard, internal division models, exercise books
KLB Mathematics Book Three Pg 232-234
5 3
Vectors (II)
External division of a line
By the end of the lesson, the learner should be able to:
Divide a line externally in the given ratio
Apply the external division formula
Distinguish between internal and external division
Solve external division problems accurately
Q/A on external division using systematic formula application
Discussions on external point calculation using vector methods
Solving external division problems using careful approaches
Demonstrations using external point construction examples
Explaining external division using extended line concepts
Chalk and blackboard, external division models, exercise books
KLB Mathematics Book Three Pg 238-239
5 4
Vectors (II)
Combined internal and external division
By the end of the lesson, the learner should be able to:
Divide a line internally and externally in the given ratio
Apply both division formulas systematically
Compare internal and external division results
Handle mixed division problems
Q/A on combined division using comparative methods
Discussions on division type selection using problem analysis
Solving combined division problems using systematic approaches
Demonstrations using both division types
Explaining division relationships using geometric reasoning
Chalk and blackboard, combined division models, exercise books
KLB Mathematics Book Three Pg 239
5 5
Vectors (II)
Ratio theorem
Advanced ratio theorem applications
By the end of the lesson, the learner should be able to:
Express position vectors
Apply the ratio theorem to geometric problems
Use ratio theorem in complex calculations
Find position vectors using ratio relationships
Q/A on ratio theorem application using systematic methods
Discussions on position vector calculation using ratio methods
Solving ratio theorem problems using organized approaches
Demonstrations using ratio-based position finding
Explaining theorem applications using logical reasoning
Chalk and blackboard, ratio theorem aids, exercise books
Chalk and blackboard, advanced ratio models, exercise books
KLB Mathematics Book Three Pg 240-242
5 6
Vectors (II)
Mid-point
By the end of the lesson, the learner should be able to:
Find the mid-points of the given vectors
Apply midpoint formulas in vector contexts
Use midpoint concepts in geometric problems
Calculate midpoints systematically
Q/A on midpoint calculation using vector averaging methods
Discussions on midpoint applications using geometric examples
Solving midpoint problems using systematic approaches
Demonstrations using midpoint construction and calculation
Explaining midpoint concepts using practical examples
Chalk and blackboard, midpoint demonstration aids, exercise books
KLB Mathematics Book Three Pg 243
5 7
Vectors (II)
Ratio theorem and midpoint integration
By the end of the lesson, the learner should be able to:
Use ratio theorem to find the given vectors
Apply midpoint and ratio concepts together
Solve complex ratio and midpoint problems
Integrate division and midpoint methods
Q/A on integrated problem-solving using combined methods
Discussions on complex scenario analysis using systematic approaches
Solving challenging problems using integrated techniques
Demonstrations using comprehensive geometric examples
Explaining integration using logical problem-solving
Chalk and blackboard, complex problem materials, exercise books
KLB Mathematics Book Three Pg 244-245
6

END OF SEPTEMBER CAT

6 4
Vectors (II)
Advanced ratio theorem applications
Applications of vectors in geometry
By the end of the lesson, the learner should be able to:
Use ratio theorem to find the given vectors
Apply ratio theorem to challenging problems
Handle complex geometric applications
Demonstrate comprehensive ratio mastery
Q/A on comprehensive ratio understanding using advanced problems
Discussions on complex ratio relationships
Solving advanced ratio problems using systematic methods
Demonstrations using sophisticated geometric constructions
Explaining mastery using challenging applications
Chalk and blackboard, advanced geometric aids, exercise books
Chalk and blackboard, parallelogram models, exercise books
KLB Mathematics Book Three Pg 246-248
6 5
Vectors (II)
Rectangle diagonal applications
By the end of the lesson, the learner should be able to:
Use vectors to show the diagonals of a rectangle
Apply vector methods to rectangle properties
Prove rectangle theorems using vectors
Compare parallelogram and rectangle diagonal properties
Q/A on rectangle properties using vector analysis
Discussions on diagonal relationships using vector methods
Solving rectangle problems using systematic approaches
Demonstrations using rectangle constructions and vector proofs
Explaining rectangle properties using vector reasoning
Chalk and blackboard, rectangle models, exercise books
KLB Mathematics Book Three Pg 248-250
6 6
Vectors (II)
Advanced geometric applications
By the end of the lesson, the learner should be able to:
Use vectors to show geometric properties
Apply vectors to complex geometric proofs
Solve challenging geometric problems using vectors
Integrate all vector concepts in geometric contexts
Q/A on comprehensive geometric applications using vector methods
Discussions on advanced proof techniques using vectors
Solving complex geometric problems using integrated approaches
Demonstrations using sophisticated geometric constructions
Explaining advanced applications using comprehensive reasoning
Chalk and blackboard, advanced geometric models, exercise books
KLB Mathematics Book Three Pg 248-250
6 7
Probability
Introduction
Experimental Probability
By the end of the lesson, the learner should be able to:
Calculate the experimental probability
Understand probability concepts in daily life
Distinguish between certain and uncertain events
Recognize probability situations
Q/A on uncertain events from daily life experiences
Discussions on weather prediction and game outcomes
Analyzing chance events using coin tossing and dice rolling
Demonstrations using simple probability experiments
Explaining probability language using familiar examples
Chalk and blackboard, coins, dice made from cardboard, exercise books
Chalk and blackboard, coins, cardboard dice, tally charts, exercise books
KLB Mathematics Book Three Pg 262-264
7 1
Probability
Experimental Probability applications
By the end of the lesson, the learner should be able to:
Calculate the experimental probability
Apply experimental methods to various scenarios
Handle large sample experiments
Analyze experimental probability patterns
Q/A on advanced experimental techniques using extended trials
Discussions on sample size effects using comparative data
Solving complex experimental problems using systematic methods
Demonstrations using extended experimental procedures
Explaining pattern analysis using accumulated data
Chalk and blackboard, extended experimental materials, data recording sheets, exercise books
KLB Mathematics Book Three Pg 262-264
7 2
Probability
Range of Probability Measure
By the end of the lesson, the learner should be able to:
Calculate the range of probability measure
Express probabilities on scale from 0 to 1
Convert between fractions, decimals, and percentages
Interpret probability values correctly
Q/A on probability scale using number line representations
Discussions on probability conversion between forms
Solving probability scale problems using systematic methods
Demonstrations using probability line and scale examples
Explaining scale interpretation using practical scenarios
Chalk and blackboard, number line drawings, probability scale charts, exercise books
KLB Mathematics Book Three Pg 265-266
7 3
Probability
Probability Space
Theoretical Probability
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Define sample space systematically
List all possible outcomes
Apply sample space concepts
Q/A on outcome listing using systematic enumeration
Discussions on complete outcome identification
Solving sample space problems using organized listing
Demonstrations using dice, cards, and spinner examples
Explaining probability calculation using outcome counting
Chalk and blackboard, playing cards (locally made), spinners from cardboard, exercise books
Chalk and blackboard, fair dice and coins, probability calculation aids, exercise books
KLB Mathematics Book Three Pg 266-267
7 4
Probability
Theoretical Probability advanced
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Apply theoretical probability to complex problems
Handle multiple outcome scenarios
Solve advanced theoretical problems
Q/A on advanced theoretical applications using complex scenarios
Discussions on multiple outcome analysis using systematic methods
Solving challenging theoretical problems using organized approaches
Demonstrations using complex probability setups
Explaining advanced theoretical concepts using detailed reasoning
Chalk and blackboard, complex probability materials, advanced calculation aids, exercise books
KLB Mathematics Book Three Pg 268-270
7 5
Probability
Theoretical Probability applications
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Apply theoretical concepts to real situations
Solve practical probability problems
Interpret results in meaningful contexts
Q/A on practical probability using local examples
Discussions on real-world applications using community scenarios
Solving application problems using theoretical methods
Demonstrations using local games and practical situations
Explaining practical interpretation using meaningful contexts
Chalk and blackboard, local game examples, practical scenario materials, exercise books
KLB Mathematics Book Three Pg 268-270
7 6
Probability
Combined Events
Combined Events OR probability
By the end of the lesson, the learner should be able to:
Find the probability of a combined events
Understand compound events and combinations
Distinguish between different event types
Apply basic combination rules
Q/A on event combination using practical examples
Discussions on exclusive and inclusive event identification
Solving basic combined event problems using visual methods
Demonstrations using card drawing and dice rolling combinations
Explaining combination principles using Venn diagrams
Chalk and blackboard, playing cards, multiple dice, Venn diagram drawings, exercise books
Chalk and blackboard, Venn diagram materials, card examples, exercise books
KLB Mathematics Book Three Pg 272-273
7 7
Probability
Independent Events
By the end of the lesson, the learner should be able to:
Find the probability of independent events
Apply multiplication rule for independent events
Calculate "A and B" probabilities
Understand independence concepts
Q/A on multiplication rule using independent event examples
Discussions on independence identification and verification
Solving AND probability problems using systematic calculation
Demonstrations using multiple coin tosses and dice combinations
Explaining multiplication rule using logical reasoning
Chalk and blackboard, multiple coins and dice, independence demonstration materials, exercise books
KLB Mathematics Book Three Pg 274-275
8 1
Probability
Independent Events advanced
By the end of the lesson, the learner should be able to:
Find the probability of independent events
Distinguish between independent and dependent events
Apply conditional probability concepts
Handle complex independence scenarios
Q/A on independence verification using mathematical methods
Discussions on dependence concepts using card drawing examples
Solving dependent and independent event problems using systematic approaches
Demonstrations using replacement and non-replacement scenarios
Explaining conditional probability using practical examples
Chalk and blackboard, playing cards for replacement scenarios, multiple experimental setups, exercise books
KLB Mathematics Book Three Pg 276-278
8 2
Probability
Independent Events applications
Tree Diagrams
By the end of the lesson, the learner should be able to:
Find the probability of independent events
Apply independence to practical problems
Solve complex multi-event scenarios
Integrate independence with other concepts
Q/A on complex event analysis using systematic problem-solving
Discussions on rule selection and application strategies
Solving advanced combined problems using integrated approaches
Demonstrations using complex experimental scenarios
Explaining strategic problem-solving using logical analysis
Chalk and blackboard, complex experimental materials, advanced calculation aids, exercise books
Chalk and blackboard, tree diagram templates, branching materials, exercise books
KLB Mathematics Book Three Pg 278-280
8 3
Probability
Tree Diagrams advanced
By the end of the lesson, the learner should be able to:
Use tree diagrams to find probability
Apply trees to multi-stage problems
Handle complex sequential events
Calculate final probabilities using trees
Q/A on complex tree application using multi-stage examples
Discussions on replacement scenario handling
Solving complex tree problems using systematic calculation
Demonstrations using detailed tree constructions
Explaining systematic probability calculation using tree methods
Chalk and blackboard, complex tree examples, detailed calculation aids, exercise books
KLB Mathematics Book Three Pg 283-285
8-9

END OF TERM EXAMS


Your Name Comes Here


Download

Feedback