If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
2 | 1 |
Matrices
|
Introduction and real-life applications
Order of a matrix and elements |
By the end of the
lesson, the learner
should be able to:
Define matrices and identify matrix applications Recognize matrices in everyday contexts Understand tabular data representation Appreciate the importance of matrices |
Q/A on tabular data in daily life
Discussions on school exam results tables Analyzing bus timetables and price lists Demonstrations using newspaper sports tables Explaining matrix notation using grid patterns |
Old newspapers with league tables, chalk and blackboard, exercise books
Chalk and blackboard, ruled exercise books, class register |
KLB Mathematics Book Three Pg 168-169
|
|
2 | 2 |
Matrices
|
Square matrices, row and column matrices
Addition of matrices Subtraction of matrices Combined addition and subtraction |
By the end of the
lesson, the learner
should be able to:
Classify matrices by their dimensions Identify square, row, and column matrices Understand zero and null matrices Apply matrix equality conditions |
Q/A on matrix classification using drawn examples
Discussions on special matrix types using patterns Solving matrix identification using cutout papers Demonstrations using classroom objects arrangement Explaining matrix comparison using simple examples |
Paper cutouts, chalk and blackboard, counters or bottle tops
Counters or stones, chalk and blackboard, exercise books Chalk and blackboard, exercise books, number cards made from cardboard Chalk and blackboard, exercise books, locally made operation cards |
KLB Mathematics Book Three Pg 169-170
|
|
2 | 3 |
Matrices
|
Scalar multiplication
Introduction to matrix multiplication Matrix multiplication (2×2 matrices) Matrix multiplication (larger matrices) |
By the end of the
lesson, the learner
should be able to:
Multiply matrices by scalar quantities Apply scalar multiplication rules Understand the effect of scalar multiplication Solve scalar multiplication problems |
Q/A on scalar multiplication using times tables
Discussions on scaling using multiplication concepts Solving scalar problems using repeated addition Demonstrations using groups of objects Explaining scalar effects using enlargement concepts |
Beans or stones for grouping, chalk and blackboard, exercise books
Chalk and blackboard, rulers for tracing, exercise books Chalk and blackboard, exercise books, homemade grid templates Chalk and blackboard, large sheets of paper for working, exercise books |
KLB Mathematics Book Three Pg 174-175
|
|
2 | 4 |
Matrices
|
Properties of matrix multiplication
Real-world matrix multiplication applications |
By the end of the
lesson, the learner
should be able to:
Understand non-commutativity of matrix multiplication Apply associative and distributive properties Distinguish between pre and post multiplication Solve problems involving multiplication properties |
Q/A on multiplication properties using counterexamples
Discussions on order importance using practical examples Solving property-based problems using verification Demonstrations using concrete examples Explaining distributive law using expansion |
Chalk and blackboard, exercise books, cardboard for property cards
Chalk and blackboard, local price lists, exercise books |
KLB Mathematics Book Three Pg 174-179
|
|
2 | 5 |
Matrices
|
Identity matrix
Determinant of 2×2 matrices |
By the end of the
lesson, the learner
should be able to:
Define and identify identity matrices Understand identity matrix properties Apply identity matrices in multiplication Recognize the multiplicative identity role |
Q/A on identity concepts using number 1 analogy
Discussions on multiplicative identity using examples Solving identity problems using pattern recognition Demonstrations using multiplication by 1 concept Explaining diagonal properties using visual patterns |
Chalk and blackboard, exercise books, pattern cards made from paper
Chalk and blackboard, exercise books, crossed sticks for demonstration |
KLB Mathematics Book Three Pg 182-183
|
|
2 | 6 |
Matrices
|
Inverse of 2×2 matrices - theory
Inverse of 2×2 matrices - practice |
By the end of the
lesson, the learner
should be able to:
Understand the concept of matrix inverse Identify conditions for matrix invertibility Apply the inverse formula for 2×2 matrices Understand singular matrices |
Q/A on inverse concepts using reciprocal analogy
Discussions on invertibility using determinant conditions Solving basic inverse problems using formula Demonstrations using step-by-step method Explaining singular matrices using zero determinant |
Chalk and blackboard, exercise books, fraction examples
Chalk and blackboard, exercise books, scrap paper for verification |
KLB Mathematics Book Three Pg 183-185
|
|
2 | 7 |
Matrices
|
Introduction to solving simultaneous equations
Solving 2×2 simultaneous equations using matrices |
By the end of the
lesson, the learner
should be able to:
Understand matrix representation of simultaneous equations Identify coefficient and constant matrices Set up matrix equations correctly Recognize the structure of linear systems |
Q/A on equation representation using familiar equations
Discussions on coefficient identification using examples Solving setup problems using systematic approach Demonstrations using equation breakdown method Explaining structure using organized layout |
Chalk and blackboard, exercise books, equation examples from previous topics
Chalk and blackboard, exercise books, previous elimination method examples |
KLB Mathematics Book Three Pg 188-189
|
|
3 | 1 |
Matrices
|
Advanced simultaneous equation problems
Matrix applications in real-world problems Transpose of matrices |
By the end of the
lesson, the learner
should be able to:
Solve complex simultaneous equation systems Handle systems with no solution or infinite solutions Interpret determinant values in solution context Apply matrix methods to word problems |
Q/A on complex systems using special cases
Discussions on solution types using geometric interpretation Solving challenging problems using complete analysis Demonstrations using classification methods Explaining geometric meaning using line concepts |
Chalk and blackboard, exercise books, graph paper if available
Chalk and blackboard, local business examples, exercise books Chalk and blackboard, exercise books, paper cutouts for demonstration |
KLB Mathematics Book Three Pg 188-190
|
|
3 | 2 |
Matrices
Formulae and Variations |
Matrix equation solving
Introduction to formulae |
By the end of the
lesson, the learner
should be able to:
Solve matrix equations systematically Find unknown matrices in equations Apply inverse operations to solve equations Verify matrix equation solutions |
Q/A on equation solving using algebraic analogy
Discussions on unknown determination using systematic methods Solving matrix equations using step-by-step approach Demonstrations using organized solution procedures Explaining verification using checking methods |
Chalk and blackboard, exercise books, algebra reference examples
Chalk and blackboard, measuring tape or string, exercise books |
KLB Mathematics Book Three Pg 183-190
|
|
3 | 3 |
Formulae and Variations
|
Subject of a formula - basic cases
Subject of a formula - intermediate cases |
By the end of the
lesson, the learner
should be able to:
Make simple variables the subject of formulae Apply inverse operations to rearrange formulae Understand the concept of subject change Solve basic subject transformation problems |
Q/A on inverse operations using number examples
Discussions on formula rearrangement using balance method Solving basic subject change problems using step-by-step approach Demonstrations using see-saw balance analogy Explaining inverse operations using practical examples |
Chalk and blackboard, simple balance (stones and stick), exercise books
Chalk and blackboard, fraction strips made from paper, exercise books |
KLB Mathematics Book Three Pg 191-193
|
|
3 | 4 |
Formulae and Variations
|
Subject of a formula - advanced cases
Applications of formula manipulation |
By the end of the
lesson, the learner
should be able to:
Make variables subject in complex formulae Handle square roots and quadratic expressions Apply advanced algebraic manipulation Solve challenging subject transformation problems |
Q/A on advanced manipulation using careful steps
Discussions on square root handling using examples Solving complex problems using systematic approach Demonstrations using detailed blackboard work Explaining quadratic handling using factoring |
Chalk and blackboard, squared paper patterns, exercise books
Chalk and blackboard, local measurement tools, exercise books |
KLB Mathematics Book Three Pg 191-193
|
|
3 | 5 |
Formulae and Variations
|
Introduction to variation
Direct variation - introduction |
By the end of the
lesson, the learner
should be able to:
Understand the concept of variation Distinguish between variables and constants Recognize variation in everyday situations Identify different types of variation |
Q/A on variable relationships using daily examples
Discussions on changing quantities in nature and commerce Analyzing variation patterns using local market prices Demonstrations using speed-time relationships Explaining variation types using practical examples |
Chalk and blackboard, local price lists from markets, exercise books
Chalk and blackboard, beans or stones for counting, exercise books |
KLB Mathematics Book Three Pg 194-196
|
|
3 | 6 |
Sequences and Series
|
Introduction to sequences and finding terms
General term of sequences and applications Arithmetic sequences and nth term |
By the end of the
lesson, the learner
should be able to:
Define sequences and identify sequence patterns Find next terms using established patterns Recognize different types of sequence patterns Apply pattern recognition systematically |
Q/A on number patterns from daily life
Discussions on counting patterns using classroom arrangements Solving pattern completion problems step-by-step Demonstrations using bead or stone arrangements Explaining sequence terminology and pattern continuation |
Chalk and blackboard, stones or beans for patterns, exercise books
Chalk and blackboard, numbered cards made from paper, exercise books Chalk and blackboard, measuring tape or string, exercise books |
KLB Mathematics Book Three Pg 207-208
|
|
3 | 7 |
Sequences and Series
|
Arithmetic sequence applications
Geometric sequences and nth term |
By the end of the
lesson, the learner
should be able to:
Solve complex arithmetic sequence problems Apply arithmetic sequences to real-world problems Handle word problems involving arithmetic sequences Model practical situations using arithmetic progressions |
Q/A on practical applications using local business examples
Discussions on salary progression and savings plans Solving real-world problems using sequence methods Demonstrations using employment and finance scenarios Explaining practical interpretation using meaningful contexts |
Chalk and blackboard, local employment/savings examples, exercise books
Chalk and blackboard, objects for doubling demonstrations, exercise books |
KLB Mathematics Book Three Pg 209-210
|
|
4 | 1 |
Sequences and Series
|
Geometric sequence applications
Arithmetic series and sum formula |
By the end of the
lesson, the learner
should be able to:
Solve complex geometric sequence problems Apply geometric sequences to real-world problems Handle population growth and depreciation problems Model exponential patterns using sequences |
Q/A on practical applications using population/growth examples
Discussions on exponential growth in nature and economics Solving real-world problems using geometric methods Demonstrations using population and business scenarios Explaining practical interpretation using meaningful contexts |
Chalk and blackboard, population/growth data examples, exercise books
Chalk and blackboard, counting materials for summation, exercise books |
KLB Mathematics Book Three Pg 211-213
|
|
4 | 2 |
Sequences and Series
|
Geometric series and applications
Mixed problems and advanced applications |
By the end of the
lesson, the learner
should be able to:
Define geometric series and understand convergence Derive and apply geometric series formulas Handle finite and infinite geometric series Apply geometric series to practical situations |
Q/A on geometric series concepts using multiplication examples
Discussions on convergence and formula applications Solving geometric series problems including infinite cases Demonstrations using geometric sum patterns Explaining convergence using practical examples |
Chalk and blackboard, convergence demonstration materials, exercise books
Chalk and blackboard, mixed problem collections, exercise books |
KLB Mathematics Book Three Pg 216-219
|
|
4 | 3 |
Sequences and Series
Vectors (II) |
Sequences in nature and technology
Coordinates in two dimensions |
By the end of the
lesson, the learner
should be able to:
Identify mathematical patterns in natural phenomena Analyze sequences in biological and technological contexts Apply sequence concepts to environmental problems Appreciate mathematics in the natural and modern world |
Q/A on natural and technological patterns using examples
Discussions on biological sequences and digital applications Solving nature and technology-based problems Demonstrations using natural pattern examples Explaining mathematical beauty using real phenomena |
Chalk and blackboard, natural and technology examples, exercise books
Chalk and blackboard, squared paper or grid drawn on ground, exercise books |
KLB Mathematics Book Three Pg 207-219
|
|
4 | 4 |
Vectors (II)
|
Coordinates in three dimensions
Column and position vectors in three dimensions Position vectors and applications |
By the end of the
lesson, the learner
should be able to:
Identify the coordinates of a point in three dimensions Understand the three-dimensional coordinate system Plot points in 3D space systematically Apply 3D coordinates to spatial problems |
Q/A on 3D coordinate understanding using room corner references
Discussions on height, length, and width measurements Solving 3D coordinate problems using systematic approaches Demonstrations using classroom corners and building structures Explaining 3D visualization using physical room examples |
Chalk and blackboard, 3D models made from sticks and clay, exercise books
Chalk and blackboard, movement demonstration space, exercise books Chalk and blackboard, origin marking systems, exercise books |
KLB Mathematics Book Three Pg 222
|
|
4 | 5 |
Vectors (II)
|
Column vectors in terms of unit vectors i, j, k
Vector operations using unit vectors |
By the end of the
lesson, the learner
should be able to:
Express vectors in terms of unit vectors Convert between column and unit vector notation Understand the standard basis vector system Apply unit vector representation systematically |
Q/A on unit vector concepts using direction examples
Discussions on component representation using organized methods Solving unit vector problems using systematic conversion Demonstrations using perpendicular direction examples Explaining basis vector concepts using coordinate axes |
Chalk and blackboard, direction indicators, unit vector reference charts, exercise books
Chalk and blackboard, component calculation aids, exercise books |
KLB Mathematics Book Three Pg 226-228
|
|
4 | 6 |
Vectors (II)
|
Magnitude of a vector in three dimensions
Magnitude applications and unit vectors |
By the end of the
lesson, the learner
should be able to:
Calculate the magnitude of a vector in three dimensions Apply the 3D magnitude formula systematically Find vector lengths in spatial contexts Solve magnitude problems accurately |
Q/A on 3D magnitude using extended Pythagorean methods
Discussions on spatial distance calculation using 3D techniques Solving 3D magnitude problems using systematic calculation Demonstrations using 3D distance examples Explaining 3D magnitude using practical spatial examples |
Chalk and blackboard, 3D measurement aids, exercise books
Chalk and blackboard, direction finding aids, exercise books |
KLB Mathematics Book Three Pg 229-230
|
|
4 | 7 |
Vectors (II)
|
Parallel vectors
Collinearity |
By the end of the
lesson, the learner
should be able to:
Identify parallel vectors Determine when vectors are parallel Apply parallel vector properties Use scalar multiples in parallel relationships |
Q/A on parallel identification using scalar multiple methods
Discussions on parallel relationships using geometric examples Solving parallel vector problems using systematic testing Demonstrations using parallel line and direction examples Explaining parallel concepts using geometric reasoning |
Chalk and blackboard, parallel line demonstrations, exercise books
Chalk and blackboard, straight-line demonstrations, exercise books |
KLB Mathematics Book Three Pg 231-232
|
|
5 | 1 |
Vectors (II)
|
Advanced collinearity applications
Proportional division of a line External division of a line |
By the end of the
lesson, the learner
should be able to:
Show that points are collinear Apply collinearity to complex geometric problems Integrate parallel and collinearity concepts Solve advanced alignment problems |
Q/A on advanced collinearity using complex scenarios
Discussions on geometric proof using vector methods Solving challenging collinearity problems Demonstrations using complex geometric constructions Explaining advanced applications using comprehensive examples |
Chalk and blackboard, complex geometric aids, exercise books
Chalk and blackboard, internal division models, exercise books Chalk and blackboard, external division models, exercise books |
KLB Mathematics Book Three Pg 232-234
|
|
5 | 2 |
Vectors (II)
|
Combined internal and external division
Ratio theorem |
By the end of the
lesson, the learner
should be able to:
Divide a line internally and externally in the given ratio Apply both division formulas systematically Compare internal and external division results Handle mixed division problems |
Q/A on combined division using comparative methods
Discussions on division type selection using problem analysis Solving combined division problems using systematic approaches Demonstrations using both division types Explaining division relationships using geometric reasoning |
Chalk and blackboard, combined division models, exercise books
Chalk and blackboard, ratio theorem aids, exercise books |
KLB Mathematics Book Three Pg 239
|
|
5 | 3 |
Vectors (II)
|
Advanced ratio theorem applications
Mid-point |
By the end of the
lesson, the learner
should be able to:
Find the position vector Apply ratio theorem to complex scenarios Solve multi-step ratio problems Use ratio theorem in geometric proofs |
Q/A on advanced ratio applications using complex problems
Discussions on multi-step ratio calculation Solving challenging ratio problems using systematic methods Demonstrations using comprehensive ratio examples Explaining advanced applications using detailed reasoning |
Chalk and blackboard, advanced ratio models, exercise books
Chalk and blackboard, midpoint demonstration aids, exercise books |
KLB Mathematics Book Three Pg 242
|
|
5 | 4 |
Vectors (II)
|
Ratio theorem and midpoint integration
Advanced ratio theorem applications |
By the end of the
lesson, the learner
should be able to:
Use ratio theorem to find the given vectors Apply midpoint and ratio concepts together Solve complex ratio and midpoint problems Integrate division and midpoint methods |
Q/A on integrated problem-solving using combined methods
Discussions on complex scenario analysis using systematic approaches Solving challenging problems using integrated techniques Demonstrations using comprehensive geometric examples Explaining integration using logical problem-solving |
Chalk and blackboard, complex problem materials, exercise books
Chalk and blackboard, advanced geometric aids, exercise books |
KLB Mathematics Book Three Pg 244-245
|
|
5 | 5 |
Vectors (II)
|
Applications of vectors in geometry
Rectangle diagonal applications |
By the end of the
lesson, the learner
should be able to:
Use vectors to show the diagonals of a parallelogram Apply vector methods to geometric proofs Demonstrate parallelogram properties using vectors Solve geometric problems using vector techniques |
Q/A on geometric proof using vector methods
Discussions on parallelogram properties using vector analysis Solving geometric problems using systematic vector techniques Demonstrations using vector-based geometric constructions Explaining geometric relationships using vector reasoning |
Chalk and blackboard, parallelogram models, exercise books
Chalk and blackboard, rectangle models, exercise books |
KLB Mathematics Book Three Pg 248-249
|
|
5 | 6 |
Vectors (II)
Binomial Expansion Binomial Expansion |
Advanced geometric applications
Binomial expansions up to power four Binomial expansions up to power four (continued) |
By the end of the
lesson, the learner
should be able to:
Use vectors to show geometric properties Apply vectors to complex geometric proofs Solve challenging geometric problems using vectors Integrate all vector concepts in geometric contexts |
Q/A on comprehensive geometric applications using vector methods
Discussions on advanced proof techniques using vectors Solving complex geometric problems using integrated approaches Demonstrations using sophisticated geometric constructions Explaining advanced applications using comprehensive reasoning |
Chalk and blackboard, advanced geometric models, exercise books
Chalk and blackboard, rectangular cutouts from paper, exercise books Chalk and blackboard, squared paper for geometric models, exercise books |
KLB Mathematics Book Three Pg 248-250
|
|
5 | 7 |
Binomial Expansion
|
Pascal's triangle
Pascal's triangle applications |
By the end of the
lesson, the learner
should be able to:
Use Pascal's triangle Construct Pascal's triangle systematically Apply triangle coefficients for binomial expansions Recognize number patterns in the triangle |
Q/A on triangle construction using addition patterns
Discussions on coefficient relationships using triangle analysis Solving triangle construction and application problems Demonstrations using visual triangle building Explaining pattern connections using systematic observation |
Chalk and blackboard, triangular patterns drawn/cut from paper, exercise books
Chalk and blackboard, Pascal's triangle reference charts, exercise books |
KLB Mathematics Book Three Pg 256-257
|
|
6 | 1 |
Binomial Expansion
|
Pascal's triangle (continued)
Pascal's triangle advanced |
By the end of the
lesson, the learner
should be able to:
Use Pascal's triangle Apply triangle to complex expansion problems Handle higher powers using Pascal's triangle Integrate triangle concepts with algebraic expansion |
Q/A on advanced triangle applications using complex examples
Discussions on higher power expansion using triangle methods Solving challenging problems using Pascal's triangle Demonstrations using detailed triangle constructions Explaining integration using comprehensive examples |
Chalk and blackboard, advanced triangle patterns, exercise books
Chalk and blackboard, combination calculation aids, exercise books |
KLB Mathematics Book Three Pg 258-259
|
|
6 | 2 |
Binomial Expansion
|
Applications to numerical cases
Applications to numerical cases (continued) |
By the end of the
lesson, the learner
should be able to:
Use binomial expansion to solve numerical problems Apply expansions for numerical approximations Calculate values using binomial methods Understand practical applications of expansions |
Q/A on numerical applications using approximation techniques
Discussions on calculation shortcuts using expansion methods Solving numerical problems using binomial approaches Demonstrations using practical calculation scenarios Explaining approximation benefits using real examples |
Chalk and blackboard, simple calculation aids, exercise books
Chalk and blackboard, advanced calculation examples, exercise books |
KLB Mathematics Book Three Pg 259-260
|
|
6 | 3 |
Probability
|
Introduction
Experimental Probability |
By the end of the
lesson, the learner
should be able to:
Calculate the experimental probability Understand probability concepts in daily life Distinguish between certain and uncertain events Recognize probability situations |
Q/A on uncertain events from daily life experiences
Discussions on weather prediction and game outcomes Analyzing chance events using coin tossing and dice rolling Demonstrations using simple probability experiments Explaining probability language using familiar examples |
Chalk and blackboard, coins, dice made from cardboard, exercise books
Chalk and blackboard, coins, cardboard dice, tally charts, exercise books |
KLB Mathematics Book Three Pg 262-264
|
|
6 | 4 |
Probability
|
Experimental Probability applications
Range of Probability Measure Probability Space |
By the end of the
lesson, the learner
should be able to:
Calculate the experimental probability Apply experimental methods to various scenarios Handle large sample experiments Analyze experimental probability patterns |
Q/A on advanced experimental techniques using extended trials
Discussions on sample size effects using comparative data Solving complex experimental problems using systematic methods Demonstrations using extended experimental procedures Explaining pattern analysis using accumulated data |
Chalk and blackboard, extended experimental materials, data recording sheets, exercise books
Chalk and blackboard, number line drawings, probability scale charts, exercise books Chalk and blackboard, playing cards (locally made), spinners from cardboard, exercise books |
KLB Mathematics Book Three Pg 262-264
|
|
6 | 5 |
Probability
|
Theoretical Probability
Theoretical Probability advanced |
By the end of the
lesson, the learner
should be able to:
Calculate the probability space for the theoretical probability Apply mathematical reasoning to find probabilities Use equally likely outcome assumptions Calculate theoretical probabilities systematically |
Q/A on theoretical calculation using mathematical principles
Discussions on equally likely assumptions and calculations Solving theoretical problems using systematic approaches Demonstrations using fair dice and unbiased coin examples Explaining mathematical probability using logical reasoning |
Chalk and blackboard, fair dice and coins, probability calculation aids, exercise books
Chalk and blackboard, complex probability materials, advanced calculation aids, exercise books |
KLB Mathematics Book Three Pg 266-268
|
|
6 | 6 |
Probability
|
Theoretical Probability applications
Combined Events |
By the end of the
lesson, the learner
should be able to:
Calculate the probability space for the theoretical probability Apply theoretical concepts to real situations Solve practical probability problems Interpret results in meaningful contexts |
Q/A on practical probability using local examples
Discussions on real-world applications using community scenarios Solving application problems using theoretical methods Demonstrations using local games and practical situations Explaining practical interpretation using meaningful contexts |
Chalk and blackboard, local game examples, practical scenario materials, exercise books
Chalk and blackboard, playing cards, multiple dice, Venn diagram drawings, exercise books |
KLB Mathematics Book Three Pg 268-270
|
|
6 | 7 |
Probability
|
Combined Events OR probability
Independent Events |
By the end of the
lesson, the learner
should be able to:
Find the probability of a combined events Apply addition rule for OR events Calculate "A or B" probabilities Handle mutually exclusive events |
Q/A on addition rule application using systematic methods
Discussions on mutually exclusive identification and calculation Solving OR probability problems using organized approaches Demonstrations using card selection and event combination Explaining addition rule logic using Venn diagrams |
Chalk and blackboard, Venn diagram materials, card examples, exercise books
Chalk and blackboard, multiple coins and dice, independence demonstration materials, exercise books |
KLB Mathematics Book Three Pg 272-274
|
|
7 | 1 |
Probability
|
Independent Events advanced
Independent Events applications |
By the end of the
lesson, the learner
should be able to:
Find the probability of independent events Distinguish between independent and dependent events Apply conditional probability concepts Handle complex independence scenarios |
Q/A on independence verification using mathematical methods
Discussions on dependence concepts using card drawing examples Solving dependent and independent event problems using systematic approaches Demonstrations using replacement and non-replacement scenarios Explaining conditional probability using practical examples |
Chalk and blackboard, playing cards for replacement scenarios, multiple experimental setups, exercise books
Chalk and blackboard, complex experimental materials, advanced calculation aids, exercise books |
KLB Mathematics Book Three Pg 276-278
|
|
7 | 2 |
Probability
Compound Proportion and Rates of Work |
Tree Diagrams
Tree Diagrams advanced Compound Proportions |
By the end of the
lesson, the learner
should be able to:
Draw tree diagrams to show the probability space Construct tree diagrams systematically Represent sequential events using trees Apply tree diagram methods |
Q/A on tree construction using step-by-step methods
Discussions on sequential event representation Solving basic tree diagram problems using systematic drawing Demonstrations using branching examples and visual organization Explaining tree structure using logical branching principles |
Chalk and blackboard, tree diagram templates, branching materials, exercise books
Chalk and blackboard, complex tree examples, detailed calculation aids, exercise books Chalk and blackboard, local business examples, calculators if available, exercise books |
KLB Mathematics Book Three Pg 282
|
|
7 | 3 |
Compound Proportion and Rates of Work
|
Compound Proportions applications
Proportional Parts |
By the end of the
lesson, the learner
should be able to:
Find the compound proportions Apply compound proportions to complex problems Handle multi-step compound proportion scenarios Solve real-world compound proportion problems |
Q/A on advanced compound proportion using complex scenarios
Discussions on multi-variable relationships using practical contexts Solving challenging compound problems using systematic approaches Demonstrations using construction and farming examples Explaining practical applications using community-based scenarios |
Chalk and blackboard, construction/farming examples, exercise books
Chalk and blackboard, sharing demonstration materials, exercise books |
KLB Mathematics Book Three Pg 290-291
|
|
7 | 4 |
Compound Proportion and Rates of Work
|
Proportional Parts applications
Rates of Work |
By the end of the
lesson, the learner
should be able to:
Calculate the proportional parts Apply proportional parts to complex sharing scenarios Handle business partnership profit sharing Solve advanced proportional distribution problems |
Q/A on complex proportional sharing using business examples
Discussions on partnership profit distribution using practical scenarios Solving advanced proportional problems using systematic methods Demonstrations using business partnership and investment examples Explaining practical applications using meaningful contexts |
Chalk and blackboard, business partnership examples, exercise books
Chalk and blackboard, work scenario examples, exercise books |
KLB Mathematics Book Three Pg 291-293
|
|
7 | 5 |
Compound Proportion and Rates of Work
Graphical Methods |
Rates of Work and Mixtures
Tables of given relations |
By the end of the
lesson, the learner
should be able to:
Calculate the rate of work Apply work rates to complex scenarios Handle mixture problems and combinations Solve advanced rate and mixture problems |
Q/A on advanced work rates using complex scenarios
Discussions on mixture problems using practical examples Solving challenging rate and mixture problems using systematic approaches Demonstrations using cooking, construction, and manufacturing examples Explaining mixture concepts using practical applications |
Chalk and blackboard, mixture demonstration materials, exercise books
Chalk and blackboard, ruled paper for tables, exercise books |
KLB Mathematics Book Three Pg 295-296
|
|
7 | 6 |
Graphical Methods
|
Graphs of given relations
Tables and graphs integration Introduction to cubic equations |
By the end of the
lesson, the learner
should be able to:
Draw graphs of given relations Plot points accurately on coordinate systems Connect points to show relationships Interpret graphs from given data |
Q/A on graph plotting using coordinate methods
Discussions on point plotting and curve drawing Solving graph construction problems using systematic plotting Demonstrations using coordinate systems and curve sketching Explaining graph interpretation using visual analysis |
Chalk and blackboard, graph paper or grids, rulers, exercise books
Chalk and blackboard, graph paper, data examples, exercise books Chalk and blackboard, cubic function examples, exercise books |
KLB Mathematics Book Three Pg 300
|
|
7 | 7 |
Graphical Methods
|
Graphical solution of cubic equations
Advanced cubic solutions |
By the end of the
lesson, the learner
should be able to:
Draw graphs of cubic equations Plot cubic curves accurately Use graphs to solve cubic equations Find roots using graphical methods |
Q/A on cubic curve plotting using systematic point plotting
Discussions on curve characteristics and root finding Solving cubic graphing problems using careful plotting Demonstrations using cubic curve construction Explaining root identification using graph analysis |
Chalk and blackboard, graph paper, cubic equation examples, exercise books
Chalk and blackboard, advanced graph examples, exercise books |
KLB Mathematics Book Three Pg 302-304
|
|
8 | 1 |
Graphical Methods
|
Introduction to rates of change
Average rates of change |
By the end of the
lesson, the learner
should be able to:
Calculate the average rates of change Understand rate of change concepts Apply rate calculations to practical problems Interpret rate meanings in context |
Q/A on rate calculation using slope methods
Discussions on rate interpretation using practical examples Solving basic rate problems using systematic calculation Demonstrations using speed-time and distance examples Explaining rate concepts using practical analogies |
Chalk and blackboard, rate calculation examples, exercise books
Chalk and blackboard, graph paper, rate examples, exercise books |
KLB Mathematics Book Three Pg 304-306
|
|
8 | 2 |
Graphical Methods
|
Advanced average rates
Introduction to instantaneous rates |
By the end of the
lesson, the learner
should be able to:
Calculate the average rates of change Handle complex rate scenarios Apply rates to business and scientific problems Integrate rate concepts with other topics |
Q/A on complex rate applications using advanced scenarios
Discussions on business and scientific rate applications Solving challenging rate problems using integrated methods Demonstrations using comprehensive rate examples Explaining advanced applications using detailed analysis |
Chalk and blackboard, advanced rate scenarios, exercise books
Chalk and blackboard, tangent line examples, exercise books |
KLB Mathematics Book Three Pg 304-310
|
|
8 | 3 |
Graphical Methods
|
Rate of change at an instant
Advanced instantaneous rates Empirical graphs Advanced empirical methods |
By the end of the
lesson, the learner
should be able to:
Calculate the rate of change at an instant Apply instantaneous rate methods systematically Use graphical techniques for instant rates Solve practical instantaneous rate problems |
Q/A on instantaneous rate calculation using graphical methods
Discussions on tangent line slope interpretation Solving instantaneous rate problems using systematic approaches Demonstrations using detailed tangent constructions Explaining practical applications using real scenarios |
Chalk and blackboard, detailed graph examples, exercise books
Chalk and blackboard, advanced rate examples, exercise books Chalk and blackboard, experimental data examples, exercise books Chalk and blackboard, complex data examples, exercise books |
KLB Mathematics Book Three Pg 310-311
|
Your Name Comes Here