If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 |
OPENING OF SCHOOL AND REVISING OF LAST TERM EXAMS |
|||||||
2 | 1 |
Circles: Chords and Tangents
|
Length of an arc
|
By the end of the
lesson, the learner
should be able to:
Calculate the length of an arc Apply arc length formula Understand arc-radius relationships |
Q/A on circle properties and terminology
Discussions on arc measurement concepts Solving basic arc length problems Demonstrations of formula application Explaining arc-angle relationships |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 124-125
|
|
2 | 2 |
Circles: Chords and Tangents
|
Length of an arc
Chords |
By the end of the
lesson, the learner
should be able to:
Calculate the length of an arc Solve complex arc length problems Apply arc concepts to real situations |
Q/A on advanced arc applications
Discussions on practical arc measurements Solving complex arc problems Demonstrations of real-world applications Explaining engineering and design uses |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 124-125
|
|
2 | 3 |
Circles: Chords and Tangents
|
Parallel chords
Equal chords |
By the end of the
lesson, the learner
should be able to:
Calculate the perpendicular bisector Find the value of parallel chords Apply parallel chord properties |
Q/A on parallel chord concepts
Discussions on perpendicular bisector properties Solving parallel chord problems Demonstrations of construction techniques Explaining geometric relationships |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 129-131
|
|
2 | 4 |
Circles: Chords and Tangents
|
Intersecting chords
Chord properties |
By the end of the
lesson, the learner
should be able to:
Calculate the length of intersecting chords Apply intersecting chord theorem Understand chord intersection properties |
Q/A on chord intersection concepts
Discussions on intersection theorem Solving basic intersection problems Demonstrations of theorem application Explaining geometric proofs |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 132-135
|
|
2 | 5 |
Circles: Chords and Tangents
|
Tangent to a circle
|
By the end of the
lesson, the learner
should be able to:
Construct a tangent to a circle Understand tangent properties Apply tangent construction methods |
Q/A on tangent definition and properties
Discussions on tangent construction Solving basic tangent problems Demonstrations of construction techniques Explaining tangent characteristics |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 139-140
|
|
2 | 6 |
Circles: Chords and Tangents
|
Properties of tangents to a circle from an external point
Tangent properties |
By the end of the
lesson, the learner
should be able to:
State the properties of tangents to a circle from an external point Apply external tangent properties Solve external tangent problems |
Q/A on external tangent concepts
Discussions on tangent properties Solving external tangent problems Demonstrations of property applications Explaining theoretical foundations |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 142-144
|
|
2 | 7 |
Circles: Chords and Tangents
|
Tangents to two circles
|
By the end of the
lesson, the learner
should be able to:
Calculate the tangents of direct common tangents Find direct common tangent properties Apply two-circle tangent concepts |
Q/A on two-circle tangent concepts
Discussions on direct tangent properties Solving direct tangent problems Demonstrations of construction methods Explaining geometric relationships |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 148-149
|
|
3 | 1 |
Circles: Chords and Tangents
|
Contact of circles
Circle contact |
By the end of the
lesson, the learner
should be able to:
Calculate the radii of contact circles Understand internal contact properties Apply contact circle concepts |
Q/A on circle contact concepts
Discussions on internal contact properties Solving internal contact problems Demonstrations of contact relationships Explaining geometric principles |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 151-153
|
|
3 | 2 |
Circles: Chords and Tangents
|
Angle in alternate segment
|
By the end of the
lesson, the learner
should be able to:
Calculate the angles in alternate segments Apply alternate segment theorem Understand segment angle properties |
Q/A on alternate segment concepts
Discussions on segment angle relationships Solving basic segment problems Demonstrations of theorem application Explaining geometric proofs |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 157-160
|
|
3 | 3 |
Circles: Chords and Tangents
|
Circumscribed circle
Escribed circles |
By the end of the
lesson, the learner
should be able to:
Construct circumscribed circles Find circumscribed circle properties Apply circumscription concepts |
Q/A on circumscription concepts
Discussions on circumscribed circle construction Solving circumscription problems Demonstrations of construction techniques Explaining circumscription applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 165
|
|
3 | 4 |
Circles: Chords and Tangents
|
Centroid
Orthocenter Circle and triangle relationships |
By the end of the
lesson, the learner
should be able to:
Construct centroid Find centroid properties Apply centroid concepts |
Q/A on centroid definition and properties
Discussions on centroid construction Solving centroid problems Demonstrations of construction techniques Explaining centroid applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 166
|
|
3 | 5 |
Matrices
|
Introduction and real-life applications
Order of a matrix and elements Square matrices, row and column matrices Addition of matrices |
By the end of the
lesson, the learner
should be able to:
Define matrices and identify matrix applications Recognize matrices in everyday contexts Understand tabular data representation Appreciate the importance of matrices |
Q/A on tabular data in daily life
Discussions on school exam results tables Analyzing bus timetables and price lists Demonstrations using newspaper sports tables Explaining matrix notation using grid patterns |
Old newspapers with league tables, chalk and blackboard, exercise books
Chalk and blackboard, ruled exercise books, class register Paper cutouts, chalk and blackboard, counters or bottle tops Counters or stones, chalk and blackboard, exercise books |
KLB Mathematics Book Three Pg 168-169
|
|
3 | 6 |
Matrices
|
Subtraction of matrices
Combined addition and subtraction Scalar multiplication Introduction to matrix multiplication Matrix multiplication (2×2 matrices) |
By the end of the
lesson, the learner
should be able to:
Subtract matrices of the same order Apply matrix subtraction rules correctly Understand order requirements for subtraction Solve complex matrix subtraction problems |
Q/A on matrix subtraction using simple numbers
Discussions on element-wise subtraction using examples Solving subtraction problems on blackboard Demonstrations using number line concepts Explaining sign changes using practical examples |
Chalk and blackboard, exercise books, number cards made from cardboard
Chalk and blackboard, exercise books, locally made operation cards Beans or stones for grouping, chalk and blackboard, exercise books Chalk and blackboard, rulers for tracing, exercise books Chalk and blackboard, exercise books, homemade grid templates |
KLB Mathematics Book Three Pg 170-171
|
|
3 | 7 |
Matrices
|
Matrix multiplication (larger matrices)
Properties of matrix multiplication |
By the end of the
lesson, the learner
should be able to:
Multiply matrices of various orders Apply multiplication to 3×3 and larger matrices Determine when multiplication is possible Calculate products efficiently |
Q/A on larger matrix multiplication using patterns
Discussions on efficiency techniques using shortcuts Solving advanced problems using systematic methods Demonstrations using organized calculation procedures Explaining general principles using examples |
Chalk and blackboard, large sheets of paper for working, exercise books
Chalk and blackboard, exercise books, cardboard for property cards |
KLB Mathematics Book Three Pg 176-179
|
|
4 | 1 |
Matrices
|
Real-world matrix multiplication applications
Identity matrix |
By the end of the
lesson, the learner
should be able to:
Apply matrix multiplication to practical problems Solve business and economic applications Calculate costs, revenues, and quantities Interpret matrix multiplication results |
Q/A on practical applications using local business examples
Discussions on market problems using familiar contexts Solving real-world problems using matrix methods Demonstrations using shop keeper scenarios Explaining result interpretation using meaningful contexts |
Chalk and blackboard, local price lists, exercise books
Chalk and blackboard, exercise books, pattern cards made from paper |
KLB Mathematics Book Three Pg 176-179
|
|
4 | 2 |
Matrices
|
Determinant of 2×2 matrices
Inverse of 2×2 matrices - theory Inverse of 2×2 matrices - practice |
By the end of the
lesson, the learner
should be able to:
Calculate determinants of 2×2 matrices Apply the determinant formula correctly Understand geometric interpretation of determinants Use determinants to classify matrices |
Q/A on determinant calculation using cross multiplication
Discussions on formula application using memory aids Solving determinant problems using systematic approach Demonstrations using cross pattern method Explaining geometric meaning using area concepts |
Chalk and blackboard, exercise books, crossed sticks for demonstration
Chalk and blackboard, exercise books, fraction examples Chalk and blackboard, exercise books, scrap paper for verification |
KLB Mathematics Book Three Pg 183
|
|
4 | 3 |
Matrices
|
Introduction to solving simultaneous equations
Solving 2×2 simultaneous equations using matrices |
By the end of the
lesson, the learner
should be able to:
Understand matrix representation of simultaneous equations Identify coefficient and constant matrices Set up matrix equations correctly Recognize the structure of linear systems |
Q/A on equation representation using familiar equations
Discussions on coefficient identification using examples Solving setup problems using systematic approach Demonstrations using equation breakdown method Explaining structure using organized layout |
Chalk and blackboard, exercise books, equation examples from previous topics
Chalk and blackboard, exercise books, previous elimination method examples |
KLB Mathematics Book Three Pg 188-189
|
|
4 | 4 |
Matrices
|
Advanced simultaneous equation problems
Matrix applications in real-world problems |
By the end of the
lesson, the learner
should be able to:
Solve complex simultaneous equation systems Handle systems with no solution or infinite solutions Interpret determinant values in solution context Apply matrix methods to word problems |
Q/A on complex systems using special cases
Discussions on solution types using geometric interpretation Solving challenging problems using complete analysis Demonstrations using classification methods Explaining geometric meaning using line concepts |
Chalk and blackboard, exercise books, graph paper if available
Chalk and blackboard, local business examples, exercise books |
KLB Mathematics Book Three Pg 188-190
|
|
4 | 5 |
Matrices
Formulae and Variations |
Transpose of matrices
Matrix equation solving Introduction to formulae |
By the end of the
lesson, the learner
should be able to:
Define and calculate matrix transpose Understand transpose properties Apply transpose operations correctly Solve problems involving transpose |
Q/A on transpose concepts using reflection ideas
Discussions on row-column interchange using visual methods Solving transpose problems using systematic approach Demonstrations using flip and rotate concepts Explaining properties using symmetry ideas |
Chalk and blackboard, exercise books, paper cutouts for demonstration
Chalk and blackboard, exercise books, algebra reference examples Chalk and blackboard, measuring tape or string, exercise books |
KLB Mathematics Book Three Pg 170-174
|
|
4 | 6 |
Formulae and Variations
|
Subject of a formula - basic cases
Subject of a formula - intermediate cases |
By the end of the
lesson, the learner
should be able to:
Make simple variables the subject of formulae Apply inverse operations to rearrange formulae Understand the concept of subject change Solve basic subject transformation problems |
Q/A on inverse operations using number examples
Discussions on formula rearrangement using balance method Solving basic subject change problems using step-by-step approach Demonstrations using see-saw balance analogy Explaining inverse operations using practical examples |
Chalk and blackboard, simple balance (stones and stick), exercise books
Chalk and blackboard, fraction strips made from paper, exercise books |
KLB Mathematics Book Three Pg 191-193
|
|
4 | 7 |
Formulae and Variations
|
Subject of a formula - advanced cases
Applications of formula manipulation |
By the end of the
lesson, the learner
should be able to:
Make variables subject in complex formulae Handle square roots and quadratic expressions Apply advanced algebraic manipulation Solve challenging subject transformation problems |
Q/A on advanced manipulation using careful steps
Discussions on square root handling using examples Solving complex problems using systematic approach Demonstrations using detailed blackboard work Explaining quadratic handling using factoring |
Chalk and blackboard, squared paper patterns, exercise books
Chalk and blackboard, local measurement tools, exercise books |
KLB Mathematics Book Three Pg 191-193
|
|
5 | 1 |
Formulae and Variations
|
Introduction to variation
Direct variation - introduction |
By the end of the
lesson, the learner
should be able to:
Understand the concept of variation Distinguish between variables and constants Recognize variation in everyday situations Identify different types of variation |
Q/A on variable relationships using daily examples
Discussions on changing quantities in nature and commerce Analyzing variation patterns using local market prices Demonstrations using speed-time relationships Explaining variation types using practical examples |
Chalk and blackboard, local price lists from markets, exercise books
Chalk and blackboard, beans or stones for counting, exercise books |
KLB Mathematics Book Three Pg 194-196
|
|
5 | 2 |
Sequences and Series
|
Introduction to sequences and finding terms
General term of sequences and applications Arithmetic sequences and nth term |
By the end of the
lesson, the learner
should be able to:
Define sequences and identify sequence patterns Find next terms using established patterns Recognize different types of sequence patterns Apply pattern recognition systematically |
Q/A on number patterns from daily life
Discussions on counting patterns using classroom arrangements Solving pattern completion problems step-by-step Demonstrations using bead or stone arrangements Explaining sequence terminology and pattern continuation |
Chalk and blackboard, stones or beans for patterns, exercise books
Chalk and blackboard, numbered cards made from paper, exercise books Chalk and blackboard, measuring tape or string, exercise books |
KLB Mathematics Book Three Pg 207-208
|
|
5 | 3 |
Sequences and Series
|
Arithmetic sequence applications
Geometric sequences and nth term |
By the end of the
lesson, the learner
should be able to:
Solve complex arithmetic sequence problems Apply arithmetic sequences to real-world problems Handle word problems involving arithmetic sequences Model practical situations using arithmetic progressions |
Q/A on practical applications using local business examples
Discussions on salary progression and savings plans Solving real-world problems using sequence methods Demonstrations using employment and finance scenarios Explaining practical interpretation using meaningful contexts |
Chalk and blackboard, local employment/savings examples, exercise books
Chalk and blackboard, objects for doubling demonstrations, exercise books |
KLB Mathematics Book Three Pg 209-210
|
|
5 | 4 |
Sequences and Series
|
Geometric sequence applications
Arithmetic series and sum formula |
By the end of the
lesson, the learner
should be able to:
Solve complex geometric sequence problems Apply geometric sequences to real-world problems Handle population growth and depreciation problems Model exponential patterns using sequences |
Q/A on practical applications using population/growth examples
Discussions on exponential growth in nature and economics Solving real-world problems using geometric methods Demonstrations using population and business scenarios Explaining practical interpretation using meaningful contexts |
Chalk and blackboard, population/growth data examples, exercise books
Chalk and blackboard, counting materials for summation, exercise books |
KLB Mathematics Book Three Pg 211-213
|
|
5 | 5 |
Sequences and Series
|
Geometric series and applications
Mixed problems and advanced applications Sequences in nature and technology |
By the end of the
lesson, the learner
should be able to:
Define geometric series and understand convergence Derive and apply geometric series formulas Handle finite and infinite geometric series Apply geometric series to practical situations |
Q/A on geometric series concepts using multiplication examples
Discussions on convergence and formula applications Solving geometric series problems including infinite cases Demonstrations using geometric sum patterns Explaining convergence using practical examples |
Chalk and blackboard, convergence demonstration materials, exercise books
Chalk and blackboard, mixed problem collections, exercise books Chalk and blackboard, natural and technology examples, exercise books |
KLB Mathematics Book Three Pg 216-219
|
|
5 | 6 |
Vectors (II)
|
Coordinates in two dimensions
Coordinates in three dimensions |
By the end of the
lesson, the learner
should be able to:
Identify the coordinates of a point in two dimensions Plot points on coordinate planes accurately Understand position representation using coordinates Apply coordinate concepts to practical situations |
Q/A on coordinate identification using grid references
Discussions on map reading and location finding Solving coordinate plotting problems using systematic methods Demonstrations using classroom grid systems and floor patterns Explaining coordinate applications using local maps and directions |
Chalk and blackboard, squared paper or grid drawn on ground, exercise books
Chalk and blackboard, 3D models made from sticks and clay, exercise books |
KLB Mathematics Book Three Pg 221-222
|
|
5 | 7 |
Vectors (II)
|
Column and position vectors in three dimensions
Position vectors and applications |
By the end of the
lesson, the learner
should be able to:
Find a displacement and represent it in column vector Calculate the position vector Express vectors in column form Apply column vector notation systematically |
Q/A on displacement representation using movement examples
Discussions on vector notation using organized column format Solving column vector problems using systematic methods Demonstrations using physical movement and direction examples Explaining vector components using practical displacement |
Chalk and blackboard, movement demonstration space, exercise books
Chalk and blackboard, origin marking systems, exercise books |
KLB Mathematics Book Three Pg 223-224
|
|
6 | 1 |
Vectors (II)
|
Column vectors in terms of unit vectors i, j, k
Vector operations using unit vectors Magnitude of a vector in three dimensions |
By the end of the
lesson, the learner
should be able to:
Express vectors in terms of unit vectors Convert between column and unit vector notation Understand the standard basis vector system Apply unit vector representation systematically |
Q/A on unit vector concepts using direction examples
Discussions on component representation using organized methods Solving unit vector problems using systematic conversion Demonstrations using perpendicular direction examples Explaining basis vector concepts using coordinate axes |
Chalk and blackboard, direction indicators, unit vector reference charts, exercise books
Chalk and blackboard, component calculation aids, exercise books Chalk and blackboard, 3D measurement aids, exercise books |
KLB Mathematics Book Three Pg 226-228
|
|
6 | 2 |
Vectors (II)
|
Magnitude applications and unit vectors
Parallel vectors |
By the end of the
lesson, the learner
should be able to:
Calculate the magnitude of a vector in three dimensions Find unit vectors from given vectors Apply magnitude concepts to practical problems Use magnitude in vector normalization |
Q/A on magnitude and unit vector relationships
Discussions on normalization and direction finding Solving magnitude and unit vector problems Demonstrations using direction and length separation Explaining practical applications using navigation examples |
Chalk and blackboard, direction finding aids, exercise books
Chalk and blackboard, parallel line demonstrations, exercise books |
KLB Mathematics Book Three Pg 229-230
|
|
6 | 3 |
Vectors (II)
|
Collinearity
Advanced collinearity applications |
By the end of the
lesson, the learner
should be able to:
Show that points are collinear Apply vector methods to prove collinearity Test for collinear points using vector techniques Solve collinearity problems systematically |
Q/A on collinearity testing using vector proportion methods
Discussions on point alignment using vector analysis Solving collinearity problems using systematic verification Demonstrations using straight-line point examples Explaining collinearity using geometric alignment concepts |
Chalk and blackboard, straight-line demonstrations, exercise books
Chalk and blackboard, complex geometric aids, exercise books |
KLB Mathematics Book Three Pg 232-234
|
|
6 | 4 |
Vectors (II)
|
Proportional division of a line
External division of a line |
By the end of the
lesson, the learner
should be able to:
Divide a line internally in the given ratio Apply the internal division formula Calculate division points using vector methods Understand proportional division concepts |
Q/A on internal division using systematic formula application
Discussions on ratio division using proportional methods Solving internal division problems using organized approaches Demonstrations using internal point construction examples Explaining internal division using geometric visualization |
Chalk and blackboard, internal division models, exercise books
Chalk and blackboard, external division models, exercise books |
KLB Mathematics Book Three Pg 237-238
|
|
6 | 5 |
Vectors (II)
|
Combined internal and external division
Ratio theorem Advanced ratio theorem applications |
By the end of the
lesson, the learner
should be able to:
Divide a line internally and externally in the given ratio Apply both division formulas systematically Compare internal and external division results Handle mixed division problems |
Q/A on combined division using comparative methods
Discussions on division type selection using problem analysis Solving combined division problems using systematic approaches Demonstrations using both division types Explaining division relationships using geometric reasoning |
Chalk and blackboard, combined division models, exercise books
Chalk and blackboard, ratio theorem aids, exercise books Chalk and blackboard, advanced ratio models, exercise books |
KLB Mathematics Book Three Pg 239
|
|
6 | 6 |
Vectors (II)
|
Mid-point
Ratio theorem and midpoint integration |
By the end of the
lesson, the learner
should be able to:
Find the mid-points of the given vectors Apply midpoint formulas in vector contexts Use midpoint concepts in geometric problems Calculate midpoints systematically |
Q/A on midpoint calculation using vector averaging methods
Discussions on midpoint applications using geometric examples Solving midpoint problems using systematic approaches Demonstrations using midpoint construction and calculation Explaining midpoint concepts using practical examples |
Chalk and blackboard, midpoint demonstration aids, exercise books
Chalk and blackboard, complex problem materials, exercise books |
KLB Mathematics Book Three Pg 243
|
|
6 | 7 |
Vectors (II)
|
Advanced ratio theorem applications
Applications of vectors in geometry Rectangle diagonal applications Advanced geometric applications |
By the end of the
lesson, the learner
should be able to:
Use ratio theorem to find the given vectors Apply ratio theorem to challenging problems Handle complex geometric applications Demonstrate comprehensive ratio mastery |
Q/A on comprehensive ratio understanding using advanced problems
Discussions on complex ratio relationships Solving advanced ratio problems using systematic methods Demonstrations using sophisticated geometric constructions Explaining mastery using challenging applications |
Chalk and blackboard, advanced geometric aids, exercise books
Chalk and blackboard, parallelogram models, exercise books Chalk and blackboard, rectangle models, exercise books Chalk and blackboard, advanced geometric models, exercise books |
KLB Mathematics Book Three Pg 246-248
|
|
7-9 |
END TERM EXAMS, MARKING AND CLOSING OF SCHOOL |
Your Name Comes Here