If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 | 3 |
Matrices and Transformation
|
Matrices of Transformation
Identifying Common Transformation Matrices |
By the end of the
lesson, the learner
should be able to:
-Define transformation and identify types -Recognize that matrices can represent transformations -Apply 2×2 matrices to position vectors -Relate matrix operations to geometric transformations |
-Review transformation concepts from Form 2 -Demonstrate matrix multiplication using position vectors -Plot objects and images on coordinate plane -Practice identifying transformations from images |
Exercise books
-Manila paper -Ruler -Pencils -String |
KLB Secondary Mathematics Form 4, Pages 1-5
|
|
1 | 4 |
Matrices and Transformation
|
Finding the Matrix of a Transformation
Using the Unit Square Method Successive Transformations Matrix Multiplication for Combined Transformations |
By the end of the
lesson, the learner
should be able to:
-Determine the matrix representing a given transformation -Use coordinate geometry to find transformation matrices -Apply algebraic methods to find matrix elements -Verify transformation matrices using test points |
-Work through algebraic method of finding matrices -Use simultaneous equations to solve for matrix elements -Practice with different types of transformations -Verify results by applying matrix to test objects |
Exercise books
-Manila paper -Ruler -Chalk/markers -String -Coloured pencils |
KLB Secondary Mathematics Form 4, Pages 6-16
|
|
1 | 5 |
Matrices and Transformation
|
Single Matrix for Successive Transformations
Inverse of a Transformation Properties of Inverse Transformations Area Scale Factor and Determinant |
By the end of the
lesson, the learner
should be able to:
-Find single matrix equivalent to successive transformations -Apply commutativity properties in matrix multiplication -Determine order of operations in transformations -Solve complex transformation problems efficiently |
-Demonstrate equivalence of successive and single matrices -Practice finding single equivalent matrices -Compare geometric and algebraic approaches -Solve real-world transformation problems |
Exercise books
-Manila paper -Ruler -Chalk/markers det A |
KLB Secondary Mathematics Form 4, Pages 21-24
|
|
1 | 6 |
Matrices and Transformation
|
Shear Transformations
Stretch Transformations |
By the end of the
lesson, the learner
should be able to:
-Define shear transformation and its properties -Identify invariant lines in shear transformations -Construct matrices for shear transformations -Apply shear transformations to geometric objects |
-Demonstrate shear using cardboard models -Identify x-axis and y-axis invariant shears -Practice constructing shear matrices -Apply shears to triangles and rectangles |
Exercise books
-Cardboard pieces -Manila paper -Ruler -Rubber bands |
KLB Secondary Mathematics Form 4, Pages 28-34
|
|
1 | 7 |
Matrices and Transformation
|
Combined Shear and Stretch Problems
Isometric and Non-isometric Transformations |
By the end of the
lesson, the learner
should be able to:
-Apply shear and stretch transformations in combination -Solve complex transformation problems -Identify transformation types from matrices -Calculate areas under shear and stretch transformations |
-Work through complex transformation sequences -Practice identifying transformation types -Calculate area changes under different transformations -Solve real-world applications |
Exercise books
-Manila paper -Ruler -Chalk/markers -Paper cutouts |
KLB Secondary Mathematics Form 4, Pages 28-34
|
|
2 |
OPENER EXAMS |
|||||||
3 | 1 |
Statistics II
|
Introduction to Advanced Statistics
Working Mean Concept |
By the end of the
lesson, the learner
should be able to:
-Review measures of central tendency from Form 2 -Identify limitations of simple mean calculations -Understand need for advanced statistical methods -Recognize patterns in large datasets |
-Review mean, median, mode from previous work -Discuss challenges with large numbers -Examine real data from Kenya (population, rainfall) -Q&A on statistical applications in daily life |
Exercise books
-Manila paper -Real data examples -Chalk/markers -Sample datasets |
KLB Secondary Mathematics Form 4, Pages 39-42
|
|
3 | 2 |
Statistics II
|
Mean Using Working Mean - Simple Data
Mean Using Working Mean - Frequency Tables |
By the end of the
lesson, the learner
should be able to:
-Calculate mean using working mean for ungrouped data -Apply the formula: mean = working mean + mean of deviations -Verify results using direct calculation method -Solve problems with whole numbers |
-Work through step-by-step examples on chalkboard -Practice with student marks and heights data -Verify answers using traditional method -Individual practice with guided support |
Exercise books
-Manila paper -Student data -Chalk/markers -Community data |
KLB Secondary Mathematics Form 4, Pages 42-48
|
|
3 | 3 |
Statistics II
|
Mean for Grouped Data Using Working Mean
Advanced Working Mean Techniques Introduction to Quartiles, Deciles, Percentiles |
By the end of the
lesson, the learner
should be able to:
-Calculate mean for grouped continuous data -Select appropriate working mean for grouped data -Use midpoints of class intervals correctly -Apply working mean formula to grouped data |
-Use height/weight data of students in class -Practice finding midpoints of class intervals -Work through complex calculations step by step -Students practice with agricultural production data |
Exercise books
-Manila paper -Real datasets -Chalk/markers -Economic data -Student height data -Measuring tape |
KLB Secondary Mathematics Form 4, Pages 42-48
|
|
3 | 4 |
Statistics II
|
Calculating Quartiles for Ungrouped Data
Quartiles for Grouped Data |
By the end of the
lesson, the learner
should be able to:
-Find lower quartile, median, upper quartile for raw data -Apply the position formulas correctly -Arrange data in ascending order systematically -Interpret quartile values in context |
-Practice with test scores from the class -Arrange data systematically on chalkboard -Calculate Q1, Q2, Q3 step by step -Students work with their own datasets |
Exercise books
-Manila paper -Test score data -Chalk/markers -Grade data |
KLB Secondary Mathematics Form 4, Pages 49-52
|
|
3 | 5 |
Statistics II
|
Deciles and Percentiles Calculations
Introduction to Cumulative Frequency |
By the end of the
lesson, the learner
should be able to:
-Calculate specific deciles and percentiles -Apply interpolation formulas for deciles/percentiles -Interpret decile and percentile positions -Use these measures for comparative analysis |
-Calculate specific percentiles for class test scores -Find deciles for sports performance data -Compare students' positions using percentiles -Practice with national examination statistics |
Exercise books
-Manila paper -Performance data -Chalk/markers -Ruler -Class data |
KLB Secondary Mathematics Form 4, Pages 49-52
|
|
3 | 6 |
Statistics II
|
Drawing Cumulative Frequency Curves (Ogives)
Reading Values from Ogives |
By the end of the
lesson, the learner
should be able to:
-Draw accurate ogives using proper scales -Plot cumulative frequency against upper boundaries -Create smooth curves through plotted points -Label axes and scales correctly |
-Practice plotting on large manila paper -Use rulers for accurate scales -Demonstrate smooth curve drawing technique -Students create their own ogives |
Exercise books
-Manila paper -Ruler -Pencils -Completed ogives |
KLB Secondary Mathematics Form 4, Pages 52-60
|
|
3 | 7 |
Statistics II
|
Applications of Ogives
Introduction to Measures of Dispersion |
By the end of the
lesson, the learner
should be able to:
-Use ogives to solve real-world problems -Find number of values above/below certain points -Calculate percentage of data in given ranges -Compare different datasets using ogives |
-Solve problems about pass rates in examinations -Find how many students scored above average -Calculate percentages for different grade ranges -Use agricultural production data for analysis |
Exercise books
-Manila paper -Real problem datasets -Ruler -Comparative datasets -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 52-60
|
|
4 | 1 |
Statistics II
|
Range and Interquartile Range
Mean Absolute Deviation Introduction to Variance |
By the end of the
lesson, the learner
should be able to:
-Calculate range for different datasets -Find interquartile range (Q3 - Q1) -Calculate quartile deviation (semi-interquartile range) -Compare advantages and limitations of each measure |
-Calculate range for student heights in class -Find IQR for the same data -Discuss effect of outliers on range -Compare IQR stability with range |
Exercise books
-Manila paper -Student data -Measuring tape -Test score data -Chalk/markers -Simple datasets |
KLB Secondary Mathematics Form 4, Pages 60-65
|
|
4 | 2 |
Statistics II
|
Variance Using Alternative Formula
Standard Deviation Calculations |
By the end of the
lesson, the learner
should be able to:
-Apply the formula: σ² = (Σx²/n) - x̄² -Use alternative variance formula efficiently -Compare computational methods -Solve variance problems for frequency data |
-Demonstrate both variance formulas -Show computational advantages of alternative formula -Practice with frequency tables -Students choose efficient method |
Exercise books
-Manila paper -Frequency data -Chalk/markers -Exam score data |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
4 | 3 |
Statistics II
|
Standard Deviation for Grouped Data
Advanced Standard Deviation Techniques |
By the end of the
lesson, the learner
should be able to:
-Calculate standard deviation for frequency distributions -Use working mean with grouped data for SD -Apply coding techniques to simplify calculations -Solve complex grouped data problems |
-Work with agricultural yield data from local farms -Use coding method to simplify calculations -Calculate SD step by step for grouped data -Compare variability in different crops |
Exercise books
-Manila paper -Agricultural data -Chalk/markers -Transformation examples |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
4 | 4 |
Loci
|
Introduction to Loci
Basic Locus Concepts and Laws |
By the end of the
lesson, the learner
should be able to:
-Define locus and understand its meaning -Distinguish between locus of points, lines, and regions -Identify real-world examples of loci -Understand the concept of movement according to given laws |
-Demonstrate door movement to show path traced by corner -Use string and pencil to show circular locus -Discuss examples: clock hands, pendulum swing -Students trace paths of moving objects |
Exercise books
-Manila paper -String -Chalk/markers -Real objects |
KLB Secondary Mathematics Form 4, Pages 73-75
|
|
4 | 5 |
Loci
|
Perpendicular Bisector Locus
Properties and Applications of Perpendicular Bisector |
By the end of the
lesson, the learner
should be able to:
-Define perpendicular bisector locus -Construct perpendicular bisector using compass and ruler -Prove that points on perpendicular bisector are equidistant from endpoints -Apply perpendicular bisector to solve problems |
-Construct perpendicular bisector on manila paper -Measure distances to verify equidistance property -Use folding method to find perpendicular bisector -Practice with different line segments |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
4 | 6 |
Loci
|
Locus of Points at Fixed Distance from a Point
Locus of Points at Fixed Distance from a Line Angle Bisector Locus |
By the end of the
lesson, the learner
should be able to:
-Define circle as locus of points at fixed distance from center -Construct circles with given radius using compass -Understand sphere as 3D locus from fixed point -Solve problems involving circular loci |
-Construct circles of different radii -Demonstrate with string of fixed length -Discuss radar coverage, radio signal range -Students create circles with various measurements |
Exercise books
-Manila paper -Compass -String -Ruler -Set square -Protractor |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
4 | 7 |
Loci
|
Properties and Applications of Angle Bisector
Constant Angle Locus |
By the end of the
lesson, the learner
should be able to:
-Understand relationship between angle bisectors in triangles -Apply angle bisector theorem -Solve problems involving inscribed circles -Use angle bisectors in geometric constructions |
-Construct inscribed circle using angle bisectors -Apply angle bisector theorem to solve problems -Find external angle bisectors -Solve practical surveying problems |
Exercise books
-Manila paper -Compass -Ruler -Protractor |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
5 | 1 |
Loci
|
Advanced Constant Angle Constructions
Introduction to Intersecting Loci |
By the end of the
lesson, the learner
should be able to:
-Construct constant angle loci for various angles -Find centers of constant angle arcs -Solve complex constant angle problems -Apply to geometric theorem proving |
-Find centers for 60°, 90°, 120° angle loci -Construct major and minor arcs -Solve problems involving multiple angle constraints -Verify constructions using measurement |
Exercise books
-Manila paper -Compass -Protractor -Ruler |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
5 | 2 |
Loci
|
Intersecting Circles and Lines
Triangle Centers Using Intersecting Loci |
By the end of the
lesson, the learner
should be able to:
-Find intersections of circles with lines -Determine intersections of two circles -Solve problems with line and circle combinations -Apply to geometric construction problems |
-Construct intersecting circles and lines -Find common tangents to circles -Solve problems involving circle-line intersections -Apply to wheel and track problems |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 83-89
|
|
5 | 3 |
Loci
|
Complex Intersecting Loci Problems
Introduction to Loci of Inequalities |
By the end of the
lesson, the learner
should be able to:
-Solve problems with three or more conditions -Find regions satisfying multiple constraints -Apply intersecting loci to optimization problems -Use systematic approach to complex problems |
-Solve treasure hunt type problems -Find optimal locations for facilities -Apply to surveying and engineering problems -Practice systematic problem-solving approach |
Exercise books
-Manila paper -Compass -Real-world scenarios -Ruler -Colored pencils |
KLB Secondary Mathematics Form 4, Pages 83-89
|
|
5 | 4 |
Loci
|
Distance Inequality Loci
Combined Inequality Loci Advanced Inequality Applications |
By the end of the
lesson, the learner
should be able to:
-Represent distance inequalities graphically -Solve problems with "less than" and "greater than" distances -Find regions satisfying distance constraints -Apply to safety zone problems |
-Shade regions inside and outside circles -Solve exclusion zone problems -Apply to communication range problems -Practice with multiple distance constraints |
Exercise books
-Manila paper -Compass -Colored pencils -Ruler -Real problem data |
KLB Secondary Mathematics Form 4, Pages 89-92
|
|
5 | 5 |
Loci
|
Introduction to Loci Involving Chords
Chord-Based Constructions |
By the end of the
lesson, the learner
should be able to:
-Review chord properties in circles -Understand perpendicular bisector of chords -Apply chord theorems to loci problems -Construct equal chords in circles |
-Review chord bisector theorem -Construct chords of given lengths -Find centers using chord properties -Practice with chord intersection theorems |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 92-94
|
|
5 | 6 |
Loci
|
Advanced Chord Problems
Integration of All Loci Types |
By the end of the
lesson, the learner
should be able to:
-Solve complex problems involving multiple chords -Apply power of point theorem -Find loci related to chord properties -Use chords in circle geometry proofs |
-Apply intersecting chords theorem -Solve problems with chord-secant relationships -Find loci of points with equal power -Practice with tangent-chord angles |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 92-94
|
|
5 | 7 |
Trigonometry III
|
Review of Basic Trigonometric Ratios
Deriving the Identity sin²θ + cos²θ = 1 |
By the end of the
lesson, the learner
should be able to:
-Recall sin, cos, tan from right-angled triangles -Apply Pythagoras theorem with trigonometry -Use basic trigonometric ratios to solve problems -Establish relationship between trigonometric ratios |
-Review right-angled triangle ratios from Form 2 -Practice calculating unknown sides and angles -Work through examples using SOH-CAH-TOA -Solve simple practical problems |
Exercise books
-Manila paper -Rulers -Calculators (if available) -Unit circle diagrams -Calculators |
KLB Secondary Mathematics Form 4, Pages 99-103
|
|
6 |
MID TERM EXAMS |
|||||||
7 | 1 |
Trigonometry III
|
Applications of sin²θ + cos²θ = 1
Additional Trigonometric Identities |
By the end of the
lesson, the learner
should be able to:
-Solve problems using the fundamental identity -Find missing trigonometric ratios given one ratio -Apply identity to simplify trigonometric expressions -Use identity in geometric problem solving |
-Work through examples finding cos when sin is given -Practice simplifying complex trigonometric expressions -Solve problems involving unknown angles -Apply to real-world navigation problems |
Exercise books
-Manila paper -Trigonometric tables -Real-world examples -Identity reference sheet -Calculators |
KLB Secondary Mathematics Form 4, Pages 99-103
|
|
7 | 2 |
Trigonometry III
|
Introduction to Waves
Sine and Cosine Waves Transformations of Sine Waves |
By the end of the
lesson, the learner
should be able to:
-Define amplitude and period of waves -Understand wave characteristics and properties -Identify amplitude and period from graphs -Connect waves to trigonometric functions |
-Use physical demonstrations with string/rope -Draw simple wave patterns on manila paper -Measure amplitude and period from wave diagrams -Discuss real-world wave examples (sound, light) |
Exercise books
-Manila paper -String/rope -Wave diagrams -Rulers -Graph paper (if available) -Colored pencils |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
7 | 3 |
Trigonometry III
|
Period Changes in Trigonometric Functions
Combined Amplitude and Period Transformations |
By the end of the
lesson, the learner
should be able to:
-Understand effect of coefficient on period -Plot graphs of y = sin(bx) for different values of b -Calculate periods of transformed functions -Apply period changes to cyclical phenomena |
-Plot y = sin(2x), y = sin(x/2) on manila paper -Compare periods with y = sin x -Calculate period using formula 360°/b -Apply to frequency and musical pitch examples |
Exercise books
-Manila paper -Rulers -Period calculation charts -Transformation examples |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
7 | 4 |
Trigonometry III
|
Phase Angles and Wave Shifts
General Trigonometric Functions |
By the end of the
lesson, the learner
should be able to:
-Understand concept of phase angle -Plot graphs of y = sin(x + θ) functions -Identify horizontal shifts in wave patterns -Apply phase differences to wave analysis |
-Plot y = sin(x + 45°), y = sin(x - 30°) -Demonstrate horizontal shifting of waves -Compare leading and lagging waves -Apply to electrical circuits or sound waves |
Exercise books
-Manila paper -Colored pencils -Phase shift examples -Rulers -Complex function examples |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
7 | 5 |
Trigonometry III
|
Cosine Wave Transformations
Introduction to Trigonometric Equations |
By the end of the
lesson, the learner
should be able to:
-Apply transformations to cosine functions -Plot y = a cos(bx + c) functions -Compare cosine and sine transformations -Use cosine functions in modeling |
-Plot various cosine transformations on manila paper -Compare with equivalent sine transformations -Practice identifying cosine wave parameters -Model temperature variations using cosine |
Exercise books
-Manila paper -Rulers -Temperature data -Unit circle diagrams -Trigonometric tables |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
7 | 6 |
Trigonometry III
|
Solving Basic Trigonometric Equations
Quadratic Trigonometric Equations Equations Involving Multiple Angles |
By the end of the
lesson, the learner
should be able to:
-Solve equations of form sin x = k, cos x = k -Find all solutions in specified ranges -Use symmetry properties of trigonometric functions -Apply inverse trigonometric functions |
-Work through sin x = 0.6 step by step -Find all solutions between 0° and 360° -Use calculator to find inverse trigonometric values -Practice with multiple basic equations |
Exercise books
-Manila paper -Calculators -Solution worksheets -Factoring techniques -Substitution examples -Multiple angle examples -Real applications |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
7 | 7 |
Trigonometry III
|
Using Graphs to Solve Trigonometric Equations
Trigonometric Equations with Identities |
By the end of the
lesson, the learner
should be able to:
-Solve equations graphically using intersections -Plot trigonometric functions on same axes -Find intersection points as equation solutions -Verify algebraic solutions graphically |
-Plot y = sin x and y = 0.5 on same axes -Identify intersection points as solutions -Use graphical method for complex equations -Compare graphical and algebraic solutions |
Exercise books
-Manila paper -Rulers -Graphing examples -Identity reference sheets -Complex examples |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
8 | 1 |
Three Dimensional Geometry
|
Introduction to 3D Concepts
Properties of Common Solids |
By the end of the
lesson, the learner
should be able to:
-Distinguish between 1D, 2D, and 3D objects -Identify vertices, edges, and faces of 3D solids -Understand concepts of points, lines, and planes in space -Recognize real-world 3D objects and their properties |
-Use classroom objects to demonstrate dimensions -Count vertices, edges, faces of cardboard models -Identify 3D shapes in school environment -Discuss difference between area and volume |
Exercise books
-Cardboard boxes -Manila paper -Real 3D objects -Cardboard -Scissors -Tape/glue |
KLB Secondary Mathematics Form 4, Pages 113-115
|
|
8 | 2 |
Three Dimensional Geometry
|
Understanding Planes in 3D Space
Lines in 3D Space |
By the end of the
lesson, the learner
should be able to:
-Define planes and their properties in 3D -Identify parallel and intersecting planes -Understand that planes extend infinitely -Recognize planes formed by faces of solids |
-Use books/boards to represent planes -Demonstrate parallel planes using multiple books -Show intersecting planes using book corners -Identify planes in classroom architecture |
Exercise books
-Manila paper -Books/boards -Classroom examples -Rulers/sticks -3D models |
KLB Secondary Mathematics Form 4, Pages 113-115
|
|
8 | 3 |
Three Dimensional Geometry
|
Introduction to Projections
Angle Between Line and Plane - Concept |
By the end of the
lesson, the learner
should be able to:
-Understand concept of projection in 3D geometry -Find projections of points onto planes -Identify foot of perpendicular from point to plane -Apply projection concept to shadow problems |
-Use light source to create shadows (projections) -Drop perpendiculars from corners to floor -Identify projections in architectural drawings -Practice finding feet of perpendiculars |
Exercise books
-Manila paper -Light source -3D models -Protractor -Rulers/sticks |
KLB Secondary Mathematics Form 4, Pages 115-123
|
|
8 | 4 |
Three Dimensional Geometry
|
Calculating Angles Between Lines and Planes
Advanced Line-Plane Angle Problems Introduction to Plane-Plane Angles |
By the end of the
lesson, the learner
should be able to:
-Calculate angles using right-angled triangles -Apply trigonometry to 3D angle problems -Use Pythagoras theorem in 3D contexts -Solve problems involving cuboids and pyramids |
-Work through step-by-step calculations -Use trigonometric ratios in 3D problems -Practice with cuboid diagonal problems -Apply to pyramid and cone angle calculations |
Exercise books
-Manila paper -Calculators -3D problem diagrams -Real scenarios -Problem sets -Books -Folded paper |
KLB Secondary Mathematics Form 4, Pages 115-123
|
|
8 | 5 |
Three Dimensional Geometry
|
Finding Angles Between Planes
Complex Plane-Plane Angle Problems |
By the end of the
lesson, the learner
should be able to:
-Construct perpendiculars to find plane angles -Apply trigonometry to calculate dihedral angles -Use right-angled triangles in plane intersection -Solve angle problems in prisms and pyramids |
-Work through construction method step-by-step -Practice finding intersection lines first -Calculate angles in triangular prisms -Apply to roof and building angle problems |
Exercise books
-Manila paper -Protractor -Building examples -Complex 3D models -Architecture examples |
KLB Secondary Mathematics Form 4, Pages 123-128
|
|
8 | 6 |
Three Dimensional Geometry
|
Practical Applications of Plane Angles
Understanding Skew Lines |
By the end of the
lesson, the learner
should be able to:
-Apply plane angles to real-world problems -Solve engineering and construction problems -Calculate angles in roof structures -Use in navigation and surveying contexts |
-Calculate roof pitch angles -Solve bridge construction angle problems -Apply to mining and tunnel excavation -Use in aerial navigation problems |
Exercise books
-Manila paper -Real engineering data -Construction examples -Rulers -Building frameworks |
KLB Secondary Mathematics Form 4, Pages 123-128
|
|
8 | 7 |
Three Dimensional Geometry
|
Angle Between Skew Lines
Advanced Skew Line Problems |
By the end of the
lesson, the learner
should be able to:
-Understand how to find angle between skew lines -Apply translation method for skew line angles -Use parallel line properties in 3D -Calculate angles by creating intersecting lines |
-Demonstrate translation method using rulers -Translate one line to intersect the other -Practice with cuboid edge problems -Apply to framework and structure problems |
Exercise books
-Manila paper -Rulers -Translation examples -Engineering examples -Structure diagrams |
KLB Secondary Mathematics Form 4, Pages 128-135
|
|
9 |
SCHOOL CLOSING |
|||||||
10 | 1 |
Three Dimensional Geometry
|
Distance Calculations in 3D
Volume and Surface Area Applications Coordinate Geometry in 3D Integration with Trigonometry |
By the end of the
lesson, the learner
should be able to:
-Calculate distances between points in 3D -Find shortest distances between lines and planes -Apply 3D Pythagoras theorem -Use distance formula in coordinate geometry |
-Calculate space diagonals in cuboids -Find distances from points to planes -Apply 3D distance formula systematically -Solve minimum distance problems |
Exercise books
-Manila paper -Distance calculation charts -3D coordinate examples -Volume formulas -Real containers -3D coordinate grid -Room corner reference -Trigonometric tables -Astronomy examples |
KLB Secondary Mathematics Form 4, Pages 115-135
|
Your Name Comes Here