If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 |
Opening and Reporting |
|||||||
2 | 1 |
Matrices
|
Introduction and real-life applications
|
By the end of the
lesson, the learner
should be able to:
Define matrices and identify matrix applications Recognize matrices in everyday contexts Understand tabular data representation Appreciate the importance of matrices |
Q/A on tabular data in daily life
Discussions on school exam results tables Analyzing bus timetables and price lists Demonstrations using newspaper sports tables Explaining matrix notation using grid patterns |
Old newspapers with league tables, chalk and blackboard, exercise books
|
KLB Mathematics Book Three Pg 168-169
|
|
2 | 2 |
Matrices
|
Order of a matrix and elements
Square matrices, row and column matrices Addition of matrices Subtraction of matrices |
By the end of the
lesson, the learner
should be able to:
Determine the order of given matrices Identify matrix elements by position Use correct notation for matrix elements Distinguish between different matrix types |
Q/A on matrix structure using grid drawings
Discussions on rows and columns using classroom seating Solving element location using coordinate games Demonstrations using drawn grids on blackboard Explaining position notation using class register |
Chalk and blackboard, ruled exercise books, class register
Paper cutouts, chalk and blackboard, counters or bottle tops Counters or stones, chalk and blackboard, exercise books Chalk and blackboard, exercise books, number cards made from cardboard |
KLB Mathematics Book Three Pg 169-170
|
|
2 | 3 |
Matrices
|
Combined addition and subtraction
Scalar multiplication Introduction to matrix multiplication |
By the end of the
lesson, the learner
should be able to:
Perform multiple matrix operations Apply order of operations in matrix calculations Solve complex combined problems Demonstrate systematic problem-solving |
Q/A on operation order using BODMAS rules
Discussions on complex expressions using step-by-step approach Solving multi-step problems using organized methods Demonstrations using systematic blackboard work Explaining operation sequencing using flowcharts |
Chalk and blackboard, exercise books, locally made operation cards
Beans or stones for grouping, chalk and blackboard, exercise books Chalk and blackboard, rulers for tracing, exercise books |
KLB Mathematics Book Three Pg 171-174
|
|
2 | 4 |
Matrices
|
Matrix multiplication (2×2 matrices)
Matrix multiplication (larger matrices) |
By the end of the
lesson, the learner
should be able to:
Multiply 2×2 matrices systematically Apply correct multiplication procedures Calculate matrix products accurately Understand result matrix dimensions |
Q/A on 2×2 matrix multiplication using simple numbers
Discussions on systematic calculation methods Solving 2×2 problems using step-by-step approach Demonstrations using organized blackboard layout Explaining product formation using grid method |
Chalk and blackboard, exercise books, homemade grid templates
Chalk and blackboard, large sheets of paper for working, exercise books |
KLB Mathematics Book Three Pg 176-179
|
|
2 | 5 |
Matrices
|
Properties of matrix multiplication
Real-world matrix multiplication applications |
By the end of the
lesson, the learner
should be able to:
Understand non-commutativity of matrix multiplication Apply associative and distributive properties Distinguish between pre and post multiplication Solve problems involving multiplication properties |
Q/A on multiplication properties using counterexamples
Discussions on order importance using practical examples Solving property-based problems using verification Demonstrations using concrete examples Explaining distributive law using expansion |
Chalk and blackboard, exercise books, cardboard for property cards
Chalk and blackboard, local price lists, exercise books |
KLB Mathematics Book Three Pg 174-179
|
|
2 | 6 |
Matrices
|
Identity matrix
Determinant of 2×2 matrices |
By the end of the
lesson, the learner
should be able to:
Define and identify identity matrices Understand identity matrix properties Apply identity matrices in multiplication Recognize the multiplicative identity role |
Q/A on identity concepts using number 1 analogy
Discussions on multiplicative identity using examples Solving identity problems using pattern recognition Demonstrations using multiplication by 1 concept Explaining diagonal properties using visual patterns |
Chalk and blackboard, exercise books, pattern cards made from paper
Chalk and blackboard, exercise books, crossed sticks for demonstration |
KLB Mathematics Book Three Pg 182-183
|
|
2 | 7 |
Matrices
|
Inverse of 2×2 matrices - theory
Inverse of 2×2 matrices - practice |
By the end of the
lesson, the learner
should be able to:
Understand the concept of matrix inverse Identify conditions for matrix invertibility Apply the inverse formula for 2×2 matrices Understand singular matrices |
Q/A on inverse concepts using reciprocal analogy
Discussions on invertibility using determinant conditions Solving basic inverse problems using formula Demonstrations using step-by-step method Explaining singular matrices using zero determinant |
Chalk and blackboard, exercise books, fraction examples
Chalk and blackboard, exercise books, scrap paper for verification |
KLB Mathematics Book Three Pg 183-185
|
|
2 | 8 |
Matrices
|
Introduction to solving simultaneous equations
|
By the end of the
lesson, the learner
should be able to:
Understand matrix representation of simultaneous equations Identify coefficient and constant matrices Set up matrix equations correctly Recognize the structure of linear systems |
Q/A on equation representation using familiar equations
Discussions on coefficient identification using examples Solving setup problems using systematic approach Demonstrations using equation breakdown method Explaining structure using organized layout |
Chalk and blackboard, exercise books, equation examples from previous topics
|
KLB Mathematics Book Three Pg 188-189
|
|
3 | 1 |
Matrices
|
Solving 2×2 simultaneous equations using matrices
Advanced simultaneous equation problems |
By the end of the
lesson, the learner
should be able to:
Solve 2×2 simultaneous equations using matrix methods Apply inverse matrix techniques Verify solutions by substitution Compare matrix method with other techniques |
Q/A on matrix solution methods using step-by-step approach
Discussions on solution verification using substitution Solving 2×2 systems using complete method Demonstrations using organized solution process Explaining method advantages using comparisons |
Chalk and blackboard, exercise books, previous elimination method examples
Chalk and blackboard, exercise books, graph paper if available |
KLB Mathematics Book Three Pg 188-190
|
|
3 | 2 |
Matrices
|
Matrix applications in real-world problems
Transpose of matrices |
By the end of the
lesson, the learner
should be able to:
Apply matrix operations to practical scenarios Solve business, engineering, and scientific problems Model real situations using matrices Interpret matrix solutions in context |
Q/A on practical applications using local examples
Discussions on modeling using familiar situations Solving comprehensive problems using matrix tools Demonstrations using community-based scenarios Explaining solution interpretation using meaningful contexts |
Chalk and blackboard, local business examples, exercise books
Chalk and blackboard, exercise books, paper cutouts for demonstration |
KLB Mathematics Book Three Pg 168-190
|
|
3 | 3 |
Matrices
Formulae and Variations |
Matrix equation solving
Introduction to formulae |
By the end of the
lesson, the learner
should be able to:
Solve matrix equations systematically Find unknown matrices in equations Apply inverse operations to solve equations Verify matrix equation solutions |
Q/A on equation solving using algebraic analogy
Discussions on unknown determination using systematic methods Solving matrix equations using step-by-step approach Demonstrations using organized solution procedures Explaining verification using checking methods |
Chalk and blackboard, exercise books, algebra reference examples
Chalk and blackboard, measuring tape or string, exercise books |
KLB Mathematics Book Three Pg 183-190
|
|
3 | 4 |
Formulae and Variations
|
Subject of a formula - basic cases
|
By the end of the
lesson, the learner
should be able to:
Make simple variables the subject of formulae Apply inverse operations to rearrange formulae Understand the concept of subject change Solve basic subject transformation problems |
Q/A on inverse operations using number examples
Discussions on formula rearrangement using balance method Solving basic subject change problems using step-by-step approach Demonstrations using see-saw balance analogy Explaining inverse operations using practical examples |
Chalk and blackboard, simple balance (stones and stick), exercise books
|
KLB Mathematics Book Three Pg 191-193
|
|
3 | 5 |
Formulae and Variations
|
Subject of a formula - intermediate cases
Subject of a formula - advanced cases |
By the end of the
lesson, the learner
should be able to:
Make complex variables the subject of formulae Handle formulae with fractions and powers Apply multiple inverse operations systematically Solve intermediate difficulty problems |
Q/A on complex rearrangement using systematic approach
Discussions on fraction handling using common denominators Solving intermediate problems using organized methods Demonstrations using step-by-step blackboard work Explaining systematic approaches using flowcharts |
Chalk and blackboard, fraction strips made from paper, exercise books
Chalk and blackboard, squared paper patterns, exercise books |
KLB Mathematics Book Three Pg 191-193
|
|
3 | 6 |
Formulae and Variations
|
Applications of formula manipulation
Introduction to variation |
By the end of the
lesson, the learner
should be able to:
Apply formula rearrangement to practical problems Solve real-world problems using formula manipulation Calculate unknown quantities in various contexts Interpret results in meaningful situations |
Q/A on practical applications using local examples
Discussions on real-world formula use in farming/building Solving application problems using formula rearrangement Demonstrations using construction and farming scenarios Explaining practical interpretation using community examples |
Chalk and blackboard, local measurement tools, exercise books
Chalk and blackboard, local price lists from markets, exercise books |
KLB Mathematics Book Three Pg 191-193
|
|
3 | 7 |
Formulae and Variations
Sequences and Series |
Direct variation - introduction
Introduction to sequences and finding terms |
By the end of the
lesson, the learner
should be able to:
Understand direct proportionality concepts Recognize direct variation patterns Use direct variation notation correctly Calculate constants of proportionality |
Q/A on direct relationships using simple examples
Discussions on proportional changes using market scenarios Solving basic direct variation problems Demonstrations using doubling and tripling examples Explaining proportionality using ratio concepts |
Chalk and blackboard, beans or stones for counting, exercise books
Chalk and blackboard, stones or beans for patterns, exercise books |
KLB Mathematics Book Three Pg 194-196
|
|
3 | 8 |
Sequences and Series
|
General term of sequences and applications
Arithmetic sequences and nth term |
By the end of the
lesson, the learner
should be able to:
Develop general rules for sequences Express the nth term using algebraic notation Find specific terms using general formulas Apply sequence concepts to practical problems |
Q/A on rule formulation using systematic approach
Discussions on algebraic expression development Solving general term and application problems Demonstrations using position-value relationships Explaining practical relevance using community examples |
Chalk and blackboard, numbered cards made from paper, exercise books
Chalk and blackboard, measuring tape or string, exercise books |
KLB Mathematics Book Three Pg 207-208
|
|
4 | 1 |
Sequences and Series
|
Arithmetic sequence applications
|
By the end of the
lesson, the learner
should be able to:
Solve complex arithmetic sequence problems Apply arithmetic sequences to real-world problems Handle word problems involving arithmetic sequences Model practical situations using arithmetic progressions |
Q/A on practical applications using local business examples
Discussions on salary progression and savings plans Solving real-world problems using sequence methods Demonstrations using employment and finance scenarios Explaining practical interpretation using meaningful contexts |
Chalk and blackboard, local employment/savings examples, exercise books
|
KLB Mathematics Book Three Pg 209-210
|
|
4 | 2 |
Sequences and Series
|
Geometric sequences and nth term
Geometric sequence applications |
By the end of the
lesson, the learner
should be able to:
Define geometric sequences and common ratios Calculate common ratios correctly Derive and apply the geometric nth term formula Understand exponential growth patterns |
Q/A on geometric patterns using multiplication examples
Discussions on ratio-based progressions and formula derivation Solving geometric sequence problems systematically Demonstrations using doubling and scaling examples Explaining exponential structure using practical examples |
Chalk and blackboard, objects for doubling demonstrations, exercise books
Chalk and blackboard, population/growth data examples, exercise books |
KLB Mathematics Book Three Pg 211-213
|
|
4 | 3 |
Sequences and Series
|
Arithmetic series and sum formula
Geometric series and applications |
By the end of the
lesson, the learner
should be able to:
Define arithmetic series as sums of sequences Derive the sum formula for arithmetic series Apply the arithmetic series formula systematically Calculate sums efficiently using the formula |
Q/A on series concepts using summation examples
Discussions on sequence-to-series relationships and formula derivation Solving arithmetic series problems using step-by-step approach Demonstrations using cumulative sum examples Explaining derivation logic using algebraic reasoning |
Chalk and blackboard, counting materials for summation, exercise books
Chalk and blackboard, convergence demonstration materials, exercise books |
KLB Mathematics Book Three Pg 214-215
|
|
4 | 4 |
Sequences and Series
|
Mixed problems and advanced applications
Sequences in nature and technology |
By the end of the
lesson, the learner
should be able to:
Combine arithmetic and geometric concepts Solve complex mixed sequence and series problems Apply appropriate methods for different types Model real-world situations using mathematical sequences |
Q/A on problem type identification using systematic analysis
Discussions on method selection and comprehensive applications Solving mixed problems using appropriate techniques Demonstrations using interdisciplinary scenarios Explaining method choice using logical reasoning |
Chalk and blackboard, mixed problem collections, exercise books
Chalk and blackboard, natural and technology examples, exercise books |
KLB Mathematics Book Three Pg 207-219
|
|
4 | 5 |
Vectors (II)
|
Coordinates in two dimensions
|
By the end of the
lesson, the learner
should be able to:
Identify the coordinates of a point in two dimensions Plot points on coordinate planes accurately Understand position representation using coordinates Apply coordinate concepts to practical situations |
Q/A on coordinate identification using grid references
Discussions on map reading and location finding Solving coordinate plotting problems using systematic methods Demonstrations using classroom grid systems and floor patterns Explaining coordinate applications using local maps and directions |
Chalk and blackboard, squared paper or grid drawn on ground, exercise books
|
KLB Mathematics Book Three Pg 221-222
|
|
4 | 6 |
Vectors (II)
|
Coordinates in three dimensions
Column and position vectors in three dimensions |
By the end of the
lesson, the learner
should be able to:
Identify the coordinates of a point in three dimensions Understand the three-dimensional coordinate system Plot points in 3D space systematically Apply 3D coordinates to spatial problems |
Q/A on 3D coordinate understanding using room corner references
Discussions on height, length, and width measurements Solving 3D coordinate problems using systematic approaches Demonstrations using classroom corners and building structures Explaining 3D visualization using physical room examples |
Chalk and blackboard, 3D models made from sticks and clay, exercise books
Chalk and blackboard, movement demonstration space, exercise books |
KLB Mathematics Book Three Pg 222
|
|
4 | 7 |
Vectors (II)
|
Position vectors and applications
Column vectors in terms of unit vectors i, j, k |
By the end of the
lesson, the learner
should be able to:
Calculate the position vector Apply position vectors to geometric problems Find distances using position vector methods Solve positioning problems systematically |
Q/A on position vector calculation using origin references
Discussions on position determination using coordinate methods Solving position vector problems using systematic calculation Demonstrations using fixed origin and variable endpoints Explaining position concepts using practical location examples |
Chalk and blackboard, origin marking systems, exercise books
Chalk and blackboard, direction indicators, unit vector reference charts, exercise books |
KLB Mathematics Book Three Pg 224
|
|
4 | 8 |
Vectors (II)
|
Vector operations using unit vectors
Magnitude of a vector in three dimensions |
By the end of the
lesson, the learner
should be able to:
Express vectors in terms of unit vectors Perform vector addition using unit vector notation Calculate vector subtraction with i, j, k components Apply scalar multiplication to unit vectors |
Q/A on vector operations using component-wise calculation
Discussions on systematic operation methods Solving vector operation problems using organized approaches Demonstrations using component separation and combination Explaining operation logic using algebraic reasoning |
Chalk and blackboard, component calculation aids, exercise books
Chalk and blackboard, 3D measurement aids, exercise books |
KLB Mathematics Book Three Pg 226-228
|
|
5 | 1 |
Vectors (II)
|
Magnitude applications and unit vectors
Parallel vectors |
By the end of the
lesson, the learner
should be able to:
Calculate the magnitude of a vector in three dimensions Find unit vectors from given vectors Apply magnitude concepts to practical problems Use magnitude in vector normalization |
Q/A on magnitude and unit vector relationships
Discussions on normalization and direction finding Solving magnitude and unit vector problems Demonstrations using direction and length separation Explaining practical applications using navigation examples |
Chalk and blackboard, direction finding aids, exercise books
Chalk and blackboard, parallel line demonstrations, exercise books |
KLB Mathematics Book Three Pg 229-230
|
|
5 | 2 |
Vectors (II)
|
Collinearity
|
By the end of the
lesson, the learner
should be able to:
Show that points are collinear Apply vector methods to prove collinearity Test for collinear points using vector techniques Solve collinearity problems systematically |
Q/A on collinearity testing using vector proportion methods
Discussions on point alignment using vector analysis Solving collinearity problems using systematic verification Demonstrations using straight-line point examples Explaining collinearity using geometric alignment concepts |
Chalk and blackboard, straight-line demonstrations, exercise books
|
KLB Mathematics Book Three Pg 232-234
|
|
5 | 3 |
Vectors (II)
|
Advanced collinearity applications
Proportional division of a line |
By the end of the
lesson, the learner
should be able to:
Show that points are collinear Apply collinearity to complex geometric problems Integrate parallel and collinearity concepts Solve advanced alignment problems |
Q/A on advanced collinearity using complex scenarios
Discussions on geometric proof using vector methods Solving challenging collinearity problems Demonstrations using complex geometric constructions Explaining advanced applications using comprehensive examples |
Chalk and blackboard, complex geometric aids, exercise books
Chalk and blackboard, internal division models, exercise books |
KLB Mathematics Book Three Pg 232-234
|
|
5 | 4 |
Vectors (II)
|
External division of a line
Combined internal and external division |
By the end of the
lesson, the learner
should be able to:
Divide a line externally in the given ratio Apply the external division formula Distinguish between internal and external division Solve external division problems accurately |
Q/A on external division using systematic formula application
Discussions on external point calculation using vector methods Solving external division problems using careful approaches Demonstrations using external point construction examples Explaining external division using extended line concepts |
Chalk and blackboard, external division models, exercise books
Chalk and blackboard, combined division models, exercise books |
KLB Mathematics Book Three Pg 238-239
|
|
5 | 5 |
Vectors (II)
|
Ratio theorem
Advanced ratio theorem applications |
By the end of the
lesson, the learner
should be able to:
Express position vectors Apply the ratio theorem to geometric problems Use ratio theorem in complex calculations Find position vectors using ratio relationships |
Q/A on ratio theorem application using systematic methods
Discussions on position vector calculation using ratio methods Solving ratio theorem problems using organized approaches Demonstrations using ratio-based position finding Explaining theorem applications using logical reasoning |
Chalk and blackboard, ratio theorem aids, exercise books
Chalk and blackboard, advanced ratio models, exercise books |
KLB Mathematics Book Three Pg 240-242
|
|
5 | 6 |
Vectors (II)
|
Mid-point
|
By the end of the
lesson, the learner
should be able to:
Find the mid-points of the given vectors Apply midpoint formulas in vector contexts Use midpoint concepts in geometric problems Calculate midpoints systematically |
Q/A on midpoint calculation using vector averaging methods
Discussions on midpoint applications using geometric examples Solving midpoint problems using systematic approaches Demonstrations using midpoint construction and calculation Explaining midpoint concepts using practical examples |
Chalk and blackboard, midpoint demonstration aids, exercise books
|
KLB Mathematics Book Three Pg 243
|
|
5 | 7 |
Vectors (II)
|
Ratio theorem and midpoint integration
Advanced ratio theorem applications |
By the end of the
lesson, the learner
should be able to:
Use ratio theorem to find the given vectors Apply midpoint and ratio concepts together Solve complex ratio and midpoint problems Integrate division and midpoint methods |
Q/A on integrated problem-solving using combined methods
Discussions on complex scenario analysis using systematic approaches Solving challenging problems using integrated techniques Demonstrations using comprehensive geometric examples Explaining integration using logical problem-solving |
Chalk and blackboard, complex problem materials, exercise books
Chalk and blackboard, advanced geometric aids, exercise books |
KLB Mathematics Book Three Pg 244-245
|
|
5 | 8 |
Vectors (II)
|
Applications of vectors in geometry
Rectangle diagonal applications |
By the end of the
lesson, the learner
should be able to:
Use vectors to show the diagonals of a parallelogram Apply vector methods to geometric proofs Demonstrate parallelogram properties using vectors Solve geometric problems using vector techniques |
Q/A on geometric proof using vector methods
Discussions on parallelogram properties using vector analysis Solving geometric problems using systematic vector techniques Demonstrations using vector-based geometric constructions Explaining geometric relationships using vector reasoning |
Chalk and blackboard, parallelogram models, exercise books
Chalk and blackboard, rectangle models, exercise books |
KLB Mathematics Book Three Pg 248-249
|
|
6 | 1 |
Vectors (II)
Binomial Expansion |
Advanced geometric applications
Binomial expansions up to power four |
By the end of the
lesson, the learner
should be able to:
Use vectors to show geometric properties Apply vectors to complex geometric proofs Solve challenging geometric problems using vectors Integrate all vector concepts in geometric contexts |
Q/A on comprehensive geometric applications using vector methods
Discussions on advanced proof techniques using vectors Solving complex geometric problems using integrated approaches Demonstrations using sophisticated geometric constructions Explaining advanced applications using comprehensive reasoning |
Chalk and blackboard, advanced geometric models, exercise books
Chalk and blackboard, rectangular cutouts from paper, exercise books |
KLB Mathematics Book Three Pg 248-250
|
|
6 | 2 |
Binomial Expansion
|
Binomial expansions up to power four (continued)
Pascal's triangle |
By the end of the
lesson, the learner
should be able to:
Expand binomial function up to power four Handle increasingly complex coefficient patterns Apply systematic expansion techniques efficiently Verify expansions using substitution methods |
Q/A on power expansion using multiplication techniques
Discussions on coefficient identification using pattern analysis Solving expansion problems using systematic approaches Demonstrations using geometric representations Explaining verification methods using numerical substitution |
Chalk and blackboard, squared paper for geometric models, exercise books
Chalk and blackboard, triangular patterns drawn/cut from paper, exercise books |
KLB Mathematics Book Three Pg 256
|
|
6 | 3 |
Binomial Expansion
|
Pascal's triangle applications
|
By the end of the
lesson, the learner
should be able to:
Use Pascal's triangle Apply Pascal's triangle to binomial expansions efficiently Use triangle coefficients for various powers Solve expansion problems using triangle methods |
Q/A on triangle application using coefficient identification
Discussions on efficient expansion using triangle methods Solving expansion problems using Pascal's triangle Demonstrations using triangle-guided calculations Explaining efficiency benefits using comparative methods |
Chalk and blackboard, Pascal's triangle reference charts, exercise books
|
KLB Mathematics Book Three Pg 257-258
|
|
6 | 4 |
Binomial Expansion
|
Pascal's triangle (continued)
Pascal's triangle advanced |
By the end of the
lesson, the learner
should be able to:
Use Pascal's triangle Apply triangle to complex expansion problems Handle higher powers using Pascal's triangle Integrate triangle concepts with algebraic expansion |
Q/A on advanced triangle applications using complex examples
Discussions on higher power expansion using triangle methods Solving challenging problems using Pascal's triangle Demonstrations using detailed triangle constructions Explaining integration using comprehensive examples |
Chalk and blackboard, advanced triangle patterns, exercise books
Chalk and blackboard, combination calculation aids, exercise books |
KLB Mathematics Book Three Pg 258-259
|
|
6 | 5 |
Binomial Expansion
|
Applications to numerical cases
Applications to numerical cases (continued) |
By the end of the
lesson, the learner
should be able to:
Use binomial expansion to solve numerical problems Apply expansions for numerical approximations Calculate values using binomial methods Understand practical applications of expansions |
Q/A on numerical applications using approximation techniques
Discussions on calculation shortcuts using expansion methods Solving numerical problems using binomial approaches Demonstrations using practical calculation scenarios Explaining approximation benefits using real examples |
Chalk and blackboard, simple calculation aids, exercise books
Chalk and blackboard, advanced calculation examples, exercise books |
KLB Mathematics Book Three Pg 259-260
|
|
6 | 6 |
Probability
|
Introduction
Experimental Probability |
By the end of the
lesson, the learner
should be able to:
Calculate the experimental probability Understand probability concepts in daily life Distinguish between certain and uncertain events Recognize probability situations |
Q/A on uncertain events from daily life experiences
Discussions on weather prediction and game outcomes Analyzing chance events using coin tossing and dice rolling Demonstrations using simple probability experiments Explaining probability language using familiar examples |
Chalk and blackboard, coins, dice made from cardboard, exercise books
Chalk and blackboard, coins, cardboard dice, tally charts, exercise books |
KLB Mathematics Book Three Pg 262-264
|
|
6 | 7 |
Probability
|
Experimental Probability applications
|
By the end of the
lesson, the learner
should be able to:
Calculate the experimental probability Apply experimental methods to various scenarios Handle large sample experiments Analyze experimental probability patterns |
Q/A on advanced experimental techniques using extended trials
Discussions on sample size effects using comparative data Solving complex experimental problems using systematic methods Demonstrations using extended experimental procedures Explaining pattern analysis using accumulated data |
Chalk and blackboard, extended experimental materials, data recording sheets, exercise books
|
KLB Mathematics Book Three Pg 262-264
|
|
6 | 8 |
Probability
|
Range of Probability Measure
Probability Space |
By the end of the
lesson, the learner
should be able to:
Calculate the range of probability measure Express probabilities on scale from 0 to 1 Convert between fractions, decimals, and percentages Interpret probability values correctly |
Q/A on probability scale using number line representations
Discussions on probability conversion between forms Solving probability scale problems using systematic methods Demonstrations using probability line and scale examples Explaining scale interpretation using practical scenarios |
Chalk and blackboard, number line drawings, probability scale charts, exercise books
Chalk and blackboard, playing cards (locally made), spinners from cardboard, exercise books |
KLB Mathematics Book Three Pg 265-266
|
|
7 | 1 |
Probability
|
Theoretical Probability
Theoretical Probability advanced |
By the end of the
lesson, the learner
should be able to:
Calculate the probability space for the theoretical probability Apply mathematical reasoning to find probabilities Use equally likely outcome assumptions Calculate theoretical probabilities systematically |
Q/A on theoretical calculation using mathematical principles
Discussions on equally likely assumptions and calculations Solving theoretical problems using systematic approaches Demonstrations using fair dice and unbiased coin examples Explaining mathematical probability using logical reasoning |
Chalk and blackboard, fair dice and coins, probability calculation aids, exercise books
Chalk and blackboard, complex probability materials, advanced calculation aids, exercise books |
KLB Mathematics Book Three Pg 266-268
|
|
7 | 2 |
Probability
|
Theoretical Probability applications
Combined Events |
By the end of the
lesson, the learner
should be able to:
Calculate the probability space for the theoretical probability Apply theoretical concepts to real situations Solve practical probability problems Interpret results in meaningful contexts |
Q/A on practical probability using local examples
Discussions on real-world applications using community scenarios Solving application problems using theoretical methods Demonstrations using local games and practical situations Explaining practical interpretation using meaningful contexts |
Chalk and blackboard, local game examples, practical scenario materials, exercise books
Chalk and blackboard, playing cards, multiple dice, Venn diagram drawings, exercise books |
KLB Mathematics Book Three Pg 268-270
|
|
7 | 3 |
Probability
|
Combined Events OR probability
Independent Events |
By the end of the
lesson, the learner
should be able to:
Find the probability of a combined events Apply addition rule for OR events Calculate "A or B" probabilities Handle mutually exclusive events |
Q/A on addition rule application using systematic methods
Discussions on mutually exclusive identification and calculation Solving OR probability problems using organized approaches Demonstrations using card selection and event combination Explaining addition rule logic using Venn diagrams |
Chalk and blackboard, Venn diagram materials, card examples, exercise books
Chalk and blackboard, multiple coins and dice, independence demonstration materials, exercise books |
KLB Mathematics Book Three Pg 272-274
|
|
7 | 4 |
Probability
|
Independent Events advanced
|
By the end of the
lesson, the learner
should be able to:
Find the probability of independent events Distinguish between independent and dependent events Apply conditional probability concepts Handle complex independence scenarios |
Q/A on independence verification using mathematical methods
Discussions on dependence concepts using card drawing examples Solving dependent and independent event problems using systematic approaches Demonstrations using replacement and non-replacement scenarios Explaining conditional probability using practical examples |
Chalk and blackboard, playing cards for replacement scenarios, multiple experimental setups, exercise books
|
KLB Mathematics Book Three Pg 276-278
|
|
7 | 5 |
Probability
|
Independent Events applications
Tree Diagrams |
By the end of the
lesson, the learner
should be able to:
Find the probability of independent events Apply independence to practical problems Solve complex multi-event scenarios Integrate independence with other concepts |
Q/A on complex event analysis using systematic problem-solving
Discussions on rule selection and application strategies Solving advanced combined problems using integrated approaches Demonstrations using complex experimental scenarios Explaining strategic problem-solving using logical analysis |
Chalk and blackboard, complex experimental materials, advanced calculation aids, exercise books
Chalk and blackboard, tree diagram templates, branching materials, exercise books |
KLB Mathematics Book Three Pg 278-280
|
|
7 | 6 |
Probability
Compound Proportion and Rates of Work |
Tree Diagrams advanced
Compound Proportions |
By the end of the
lesson, the learner
should be able to:
Use tree diagrams to find probability Apply trees to multi-stage problems Handle complex sequential events Calculate final probabilities using trees |
Q/A on complex tree application using multi-stage examples
Discussions on replacement scenario handling Solving complex tree problems using systematic calculation Demonstrations using detailed tree constructions Explaining systematic probability calculation using tree methods |
Chalk and blackboard, complex tree examples, detailed calculation aids, exercise books
Chalk and blackboard, local business examples, calculators if available, exercise books |
KLB Mathematics Book Three Pg 283-285
|
|
7 | 7 |
Compound Proportion and Rates of Work
|
Compound Proportions applications
Proportional Parts |
By the end of the
lesson, the learner
should be able to:
Find the compound proportions Apply compound proportions to complex problems Handle multi-step compound proportion scenarios Solve real-world compound proportion problems |
Q/A on advanced compound proportion using complex scenarios
Discussions on multi-variable relationships using practical contexts Solving challenging compound problems using systematic approaches Demonstrations using construction and farming examples Explaining practical applications using community-based scenarios |
Chalk and blackboard, construction/farming examples, exercise books
Chalk and blackboard, sharing demonstration materials, exercise books |
KLB Mathematics Book Three Pg 290-291
|
|
7 | 8 |
Compound Proportion and Rates of Work
|
Proportional Parts applications
|
By the end of the
lesson, the learner
should be able to:
Calculate the proportional parts Apply proportional parts to complex sharing scenarios Handle business partnership profit sharing Solve advanced proportional distribution problems |
Q/A on complex proportional sharing using business examples
Discussions on partnership profit distribution using practical scenarios Solving advanced proportional problems using systematic methods Demonstrations using business partnership and investment examples Explaining practical applications using meaningful contexts |
Chalk and blackboard, business partnership examples, exercise books
|
KLB Mathematics Book Three Pg 291-293
|
|
8 | 1 |
Compound Proportion and Rates of Work
|
Rates of Work
Rates of Work and Mixtures |
By the end of the
lesson, the learner
should be able to:
Calculate the rate of work Understand work rate relationships Apply time-work-efficiency concepts Solve basic rate of work problems |
Q/A on work rate calculation using practical examples
Discussions on efficiency and time relationships using work scenarios Solving basic rate of work problems using systematic methods Demonstrations using construction and labor examples Explaining work rate concepts using practical work situations |
Chalk and blackboard, work scenario examples, exercise books
Chalk and blackboard, mixture demonstration materials, exercise books |
KLB Mathematics Book Three Pg 294-295
|
|
8 | 2 |
Graphical Methods
|
Tables of given relations
Graphs of given relations |
By the end of the
lesson, the learner
should be able to:
Draw tables of given relations Construct organized data tables systematically Prepare data for graphical representation Understand relationship between variables |
Q/A on table construction using systematic data organization
Discussions on variable relationships using practical examples Solving table preparation problems using organized methods Demonstrations using data collection and tabulation Explaining systematic data arrangement using logical procedures |
Chalk and blackboard, ruled paper for tables, exercise books
Chalk and blackboard, graph paper or grids, rulers, exercise books |
KLB Mathematics Book Three Pg 299
|
|
8 | 3 |
Graphical Methods
|
Tables and graphs integration
Introduction to cubic equations |
By the end of the
lesson, the learner
should be able to:
Draw tables and graphs of given relations Integrate table construction with graph plotting Analyze relationships using both methods Compare tabular and graphical representations |
Q/A on integrated table-graph construction using comprehensive methods
Discussions on data flow from tables to graphs Solving integrated problems using systematic approaches Demonstrations using complete data analysis procedures Explaining relationship analysis using combined methods |
Chalk and blackboard, graph paper, data examples, exercise books
Chalk and blackboard, cubic function examples, exercise books |
KLB Mathematics Book Three Pg 299-300
|
|
8 | 4 |
Graphical Methods
|
Graphical solution of cubic equations
Advanced cubic solutions |
By the end of the
lesson, the learner
should be able to:
Draw graphs of cubic equations Plot cubic curves accurately Use graphs to solve cubic equations Find roots using graphical methods |
Q/A on cubic curve plotting using systematic point plotting
Discussions on curve characteristics and root finding Solving cubic graphing problems using careful plotting Demonstrations using cubic curve construction Explaining root identification using graph analysis |
Chalk and blackboard, graph paper, cubic equation examples, exercise books
Chalk and blackboard, advanced graph examples, exercise books |
KLB Mathematics Book Three Pg 302-304
|
|
8 | 5 |
Graphical Methods
|
Introduction to rates of change
|
By the end of the
lesson, the learner
should be able to:
Calculate the average rates of change Understand rate of change concepts Apply rate calculations to practical problems Interpret rate meanings in context |
Q/A on rate calculation using slope methods
Discussions on rate interpretation using practical examples Solving basic rate problems using systematic calculation Demonstrations using speed-time and distance examples Explaining rate concepts using practical analogies |
Chalk and blackboard, rate calculation examples, exercise books
|
KLB Mathematics Book Three Pg 304-306
|
|
8 | 6 |
Graphical Methods
|
Average rates of change
Advanced average rates |
By the end of the
lesson, the learner
should be able to:
Calculate the average rates of change Apply average rate methods to various functions Use graphical methods for rate calculation Solve practical rate problems |
Q/A on average rate calculation using graphical methods
Discussions on rate applications using real-world scenarios Solving average rate problems using systematic approaches Demonstrations using graph-based rate calculation Explaining practical applications using meaningful contexts |
Chalk and blackboard, graph paper, rate examples, exercise books
Chalk and blackboard, advanced rate scenarios, exercise books |
KLB Mathematics Book Three Pg 304-306
|
|
8 | 7 |
Graphical Methods
|
Introduction to instantaneous rates
Rate of change at an instant |
By the end of the
lesson, the learner
should be able to:
Calculate the rate of change at an instant Understand instantaneous rate concepts Distinguish between average and instantaneous rates Apply instant rate methods |
Q/A on instantaneous rate concepts using limiting methods
Discussions on instant vs average rate differences Solving basic instantaneous rate problems Demonstrations using tangent line concepts Explaining instantaneous rate using practical examples |
Chalk and blackboard, tangent line examples, exercise books
Chalk and blackboard, detailed graph examples, exercise books |
KLB Mathematics Book Three Pg 310-311
|
|
8 | 8 |
Graphical Methods
|
Advanced instantaneous rates
Empirical graphs |
By the end of the
lesson, the learner
should be able to:
Calculate the rate of change at an instant Handle complex instantaneous rate scenarios Apply instant rates to advanced problems Integrate instantaneous concepts with applications |
Q/A on advanced instantaneous applications using complex examples
Discussions on sophisticated rate problems using detailed analysis Solving challenging instantaneous problems using systematic methods Demonstrations using comprehensive rate constructions Explaining advanced applications using detailed reasoning |
Chalk and blackboard, advanced rate examples, exercise books
Chalk and blackboard, experimental data examples, exercise books |
KLB Mathematics Book Three Pg 310-315
|
|
9 |
Closing and Examination |
|||||||
10 | 1 |
Graphical Methods
|
Advanced empirical methods
|
By the end of the
lesson, the learner
should be able to:
Draw the empirical graphs Apply empirical methods to complex data Handle large datasets and trends Interpret empirical results meaningfully |
Q/A on advanced empirical techniques using complex datasets
Discussions on trend analysis using systematic methods Solving challenging empirical problems using organized approaches Demonstrations using comprehensive data analysis Explaining advanced interpretations using detailed reasoning |
Chalk and blackboard, complex data examples, exercise books
|
KLB Mathematics Book Three Pg 315-321
|
Your Name Comes Here