If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
2 | 1-2 |
Matrices and Transformation
|
Matrices of Transformation
Identifying Common Transformation Matrices Finding the Matrix of a Transformation |
By the end of the
lesson, the learner
should be able to:
-Define transformation and identify types -Recognize that matrices can represent transformations -Apply 2×2 matrices to position vectors -Relate matrix operations to geometric transformations -Determine the matrix representing a given transformation -Use coordinate geometry to find transformation matrices -Apply algebraic methods to find matrix elements -Verify transformation matrices using test points |
-Review transformation concepts from Form 2 -Demonstrate matrix multiplication using position vectors -Plot objects and images on coordinate plane -Practice identifying transformations from images -Work through algebraic method of finding matrices -Use simultaneous equations to solve for matrix elements -Practice with different types of transformations -Verify results by applying matrix to test objects |
Exercise books
-Manila paper -Ruler -Pencils -String Exercise books -Manila paper -Ruler -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 1-5
KLB Secondary Mathematics Form 4, Pages 6-16 |
|
2 | 3 |
Matrices and Transformation
|
Using the Unit Square Method
|
By the end of the
lesson, the learner
should be able to:
-Use unit square to find transformation matrices -Read matrix elements directly from unit square images -Apply unit square method to various transformations -Compare unit square method with algebraic method |
-Demonstrate unit square method systematically -Practice reading transformation matrices from diagrams -Apply method to reflections, rotations, enlargements -Compare efficiency of different methods |
Exercise books
-Manila paper -Ruler -String |
KLB Secondary Mathematics Form 4, Pages 6-16
|
|
2 | 4 |
Matrices and Transformation
|
Successive Transformations
Matrix Multiplication for Combined Transformations |
By the end of the
lesson, the learner
should be able to:
-Understand the concept of successive transformations -Apply transformations in correct order -Recognize that order matters in matrix multiplication -Perform multiple transformations step by step |
-Demonstrate successive transformations with paper cutouts -Practice applying transformations in sequence -Compare results when order is changed -Work through step-by-step examples |
Exercise books
-Manila paper -Ruler -Coloured pencils -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 16-24
|
|
2 | 5 |
Matrices and Transformation
|
Single Matrix for Successive Transformations
|
By the end of the
lesson, the learner
should be able to:
-Find single matrix equivalent to successive transformations -Apply commutativity properties in matrix multiplication -Determine order of operations in transformations -Solve complex transformation problems efficiently |
-Demonstrate equivalence of successive and single matrices -Practice finding single equivalent matrices -Compare geometric and algebraic approaches -Solve real-world transformation problems |
Exercise books
-Manila paper -Ruler -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 21-24
|
|
2 | 6 |
Matrices and Transformation
|
Inverse of a Transformation
Properties of Inverse Transformations |
By the end of the
lesson, the learner
should be able to:
-Define inverse transformation conceptually -Find inverse matrices using algebraic methods -Apply inverse transformations to return objects to original position -Verify inverse relationships using matrix multiplication |
-Demonstrate inverse transformations geometrically -Practice finding inverse matrices algebraically -Verify that A × A⁻¹ = I -Apply inverse transformations to solve problems |
Exercise books
-Manila paper -Ruler -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 24-26
|
|
2 | 7 |
Matrices and Transformation
|
Area Scale Factor and Determinant
|
By the end of the
lesson, the learner
should be able to:
-Establish relationship between area scale factor and determinant -Calculate area scale factors for transformations -Apply determinant to find area changes -Solve problems involving area transformations |
-Measure areas of objects and images using grid paper -Calculate determinants and compare with area ratios -Practice with various transformation types -Verify the relationship: ASF = |
det A
|
|
|
3 | 1-2 |
Matrices and Transformation
|
Shear Transformations
|
By the end of the
lesson, the learner
should be able to:
-Define shear transformation and its properties -Identify invariant lines in shear transformations -Construct matrices for shear transformations -Apply shear transformations to geometric objects |
-Demonstrate shear using cardboard models -Identify x-axis and y-axis invariant shears -Practice constructing shear matrices -Apply shears to triangles and rectangles |
Exercise books
-Cardboard pieces -Manila paper -Ruler |
KLB Secondary Mathematics Form 4, Pages 28-34
|
|
3 | 3 |
Matrices and Transformation
|
Stretch Transformations
|
By the end of the
lesson, the learner
should be able to:
-Define stretch transformation and scale factors -Distinguish between one-way and two-way stretches -Construct matrices for stretch transformations -Apply stretch transformations to solve problems |
-Demonstrate stretch using rubber bands and paper -Practice with x-axis and y-axis invariant stretches -Construct stretch matrices systematically -Compare stretches with enlargements |
Exercise books
-Rubber bands -Manila paper -Ruler |
KLB Secondary Mathematics Form 4, Pages 28-34
|
|
3 | 4 |
Matrices and Transformation
|
Stretch Transformations
|
By the end of the
lesson, the learner
should be able to:
-Define stretch transformation and scale factors -Distinguish between one-way and two-way stretches -Construct matrices for stretch transformations -Apply stretch transformations to solve problems |
-Demonstrate stretch using rubber bands and paper -Practice with x-axis and y-axis invariant stretches -Construct stretch matrices systematically -Compare stretches with enlargements |
Exercise books
-Rubber bands -Manila paper -Ruler |
KLB Secondary Mathematics Form 4, Pages 28-34
|
|
3 | 5 |
Matrices and Transformation
|
Combined Shear and Stretch Problems
|
By the end of the
lesson, the learner
should be able to:
-Apply shear and stretch transformations in combination -Solve complex transformation problems -Identify transformation types from matrices -Calculate areas under shear and stretch transformations |
-Work through complex transformation sequences -Practice identifying transformation types -Calculate area changes under different transformations -Solve real-world applications |
Exercise books
-Manila paper -Ruler -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 28-34
|
|
3 | 6 |
Matrices and Transformation
|
Isometric and Non-isometric Transformations
|
By the end of the
lesson, the learner
should be able to:
-Distinguish between isometric and non-isometric transformations -Classify transformations based on shape and size preservation -Identify isometric transformations from matrices -Apply classification to solve problems |
-Compare congruent and non-congruent images using cutouts -Classify transformations systematically -Practice identification from matrices -Discuss real-world applications of each type |
Exercise books
-Paper cutouts -Manila paper -Ruler |
KLB Secondary Mathematics Form 4, Pages 35-38
|
|
3 | 7 |
Matrices and Transformation
|
Isometric and Non-isometric Transformations
|
By the end of the
lesson, the learner
should be able to:
-Distinguish between isometric and non-isometric transformations -Classify transformations based on shape and size preservation -Identify isometric transformations from matrices -Apply classification to solve problems |
-Compare congruent and non-congruent images using cutouts -Classify transformations systematically -Practice identification from matrices -Discuss real-world applications of each type |
Exercise books
-Paper cutouts -Manila paper -Ruler |
KLB Secondary Mathematics Form 4, Pages 35-38
|
|
4 | 1-2 |
Statistics II
|
Introduction to Advanced Statistics
Working Mean Concept |
By the end of the
lesson, the learner
should be able to:
-Review measures of central tendency from Form 2 -Identify limitations of simple mean calculations -Understand need for advanced statistical methods -Recognize patterns in large datasets -Define working mean (assumed mean) -Explain why working mean simplifies calculations -Identify appropriate working mean values -Apply working mean to reduce calculation errors |
-Review mean, median, mode from previous work -Discuss challenges with large numbers -Examine real data from Kenya (population, rainfall) -Q&A on statistical applications in daily life -Demonstrate calculation difficulties with large numbers -Show how working mean simplifies arithmetic -Practice selecting suitable working means -Compare results with and without working mean |
Exercise books
-Manila paper -Real data examples -Chalk/markers Exercise books -Manila paper -Sample datasets -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 39-42
|
|
4 | 3 |
Statistics II
|
Working Mean Concept
|
By the end of the
lesson, the learner
should be able to:
-Define working mean (assumed mean) -Explain why working mean simplifies calculations -Identify appropriate working mean values -Apply working mean to reduce calculation errors |
-Demonstrate calculation difficulties with large numbers -Show how working mean simplifies arithmetic -Practice selecting suitable working means -Compare results with and without working mean |
Exercise books
-Manila paper -Sample datasets -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 39-42
|
|
4 | 4 |
Statistics II
|
Mean Using Working Mean - Simple Data
|
By the end of the
lesson, the learner
should be able to:
-Calculate mean using working mean for ungrouped data -Apply the formula: mean = working mean + mean of deviations -Verify results using direct calculation method -Solve problems with whole numbers |
-Work through step-by-step examples on chalkboard -Practice with student marks and heights data -Verify answers using traditional method -Individual practice with guided support |
Exercise books
-Manila paper -Student data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 42-48
|
|
4 | 5 |
Statistics II
|
Mean Using Working Mean - Frequency Tables
|
By the end of the
lesson, the learner
should be able to:
-Calculate mean using working mean for frequency data -Apply working mean to discrete frequency distributions -Use the formula with frequencies correctly -Solve real-world problems with frequency data |
-Demonstrate with family size data from local community -Practice calculating fx and fd systematically -Work through examples step-by-step -Students practice with their own collected data |
Exercise books
-Manila paper -Community data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 42-48
|
|
4 | 6 |
Statistics II
|
Mean for Grouped Data Using Working Mean
|
By the end of the
lesson, the learner
should be able to:
-Calculate mean for grouped continuous data -Select appropriate working mean for grouped data -Use midpoints of class intervals correctly -Apply working mean formula to grouped data |
-Use height/weight data of students in class -Practice finding midpoints of class intervals -Work through complex calculations step by step -Students practice with agricultural production data |
Exercise books
-Manila paper -Real datasets -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 42-48
|
|
4 | 7 |
Statistics II
|
Mean for Grouped Data Using Working Mean
|
By the end of the
lesson, the learner
should be able to:
-Calculate mean for grouped continuous data -Select appropriate working mean for grouped data -Use midpoints of class intervals correctly -Apply working mean formula to grouped data |
-Use height/weight data of students in class -Practice finding midpoints of class intervals -Work through complex calculations step by step -Students practice with agricultural production data |
Exercise books
-Manila paper -Real datasets -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 42-48
|
|
5 | 1-2 |
Statistics II
|
Advanced Working Mean Techniques
Introduction to Quartiles, Deciles, Percentiles |
By the end of the
lesson, the learner
should be able to:
-Apply coding techniques with working mean -Divide by class width to simplify further -Use transformation methods efficiently -Solve complex grouped data problems -Define quartiles, deciles, and percentiles -Understand how they divide data into parts -Explain the relationship between these measures -Identify their importance in data analysis |
-Demonstrate coding method on chalkboard -Show how dividing by class width helps -Practice reverse calculations to get original mean -Work with economic data from Kenya -Use physical demonstration with student heights -Arrange 20 students by height to show quartiles -Explain percentile ranks in exam results -Discuss applications in grading systems |
Exercise books
-Manila paper -Economic data -Chalk/markers Exercise books -Manila paper -Student height data -Measuring tape |
KLB Secondary Mathematics Form 4, Pages 42-48
KLB Secondary Mathematics Form 4, Pages 49-52 |
|
5 | 3 |
Statistics II
|
Introduction to Quartiles, Deciles, Percentiles
|
By the end of the
lesson, the learner
should be able to:
-Define quartiles, deciles, and percentiles -Understand how they divide data into parts -Explain the relationship between these measures -Identify their importance in data analysis |
-Use physical demonstration with student heights -Arrange 20 students by height to show quartiles -Explain percentile ranks in exam results -Discuss applications in grading systems |
Exercise books
-Manila paper -Student height data -Measuring tape |
KLB Secondary Mathematics Form 4, Pages 49-52
|
|
5 | 4 |
Statistics II
|
Calculating Quartiles for Ungrouped Data
|
By the end of the
lesson, the learner
should be able to:
-Find lower quartile, median, upper quartile for raw data -Apply the position formulas correctly -Arrange data in ascending order systematically -Interpret quartile values in context |
-Practice with test scores from the class -Arrange data systematically on chalkboard -Calculate Q1, Q2, Q3 step by step -Students work with their own datasets |
Exercise books
-Manila paper -Test score data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 49-52
|
|
5 | 5 |
Statistics II
|
Quartiles for Grouped Data
|
By the end of the
lesson, the learner
should be able to:
-Calculate quartiles using interpolation formula -Identify quartile classes correctly -Apply the formula: Q = L + [(n/4 - CF)/f] × h -Solve problems with continuous grouped data |
-Work through detailed examples on chalkboard -Practice identifying quartile positions -Use cumulative frequency systematically -Apply to real examination grade data |
Exercise books
-Manila paper -Grade data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 49-52
|
|
5 | 6 |
Statistics II
|
Quartiles for Grouped Data
|
By the end of the
lesson, the learner
should be able to:
-Calculate quartiles using interpolation formula -Identify quartile classes correctly -Apply the formula: Q = L + [(n/4 - CF)/f] × h -Solve problems with continuous grouped data |
-Work through detailed examples on chalkboard -Practice identifying quartile positions -Use cumulative frequency systematically -Apply to real examination grade data |
Exercise books
-Manila paper -Grade data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 49-52
|
|
5 | 7 |
Statistics II
|
Deciles and Percentiles Calculations
|
By the end of the
lesson, the learner
should be able to:
-Calculate specific deciles and percentiles -Apply interpolation formulas for deciles/percentiles -Interpret decile and percentile positions -Use these measures for comparative analysis |
-Calculate specific percentiles for class test scores -Find deciles for sports performance data -Compare students' positions using percentiles -Practice with national examination statistics |
Exercise books
-Manila paper -Performance data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 49-52
|
|
6 | 1-2 |
Statistics II
|
Introduction to Cumulative Frequency
|
By the end of the
lesson, the learner
should be able to:
-Construct cumulative frequency tables -Understand "less than" cumulative frequencies -Plot cumulative frequency against class boundaries -Identify the characteristic S-shape of ogives |
-Create cumulative frequency table with class data -Plot points on manila paper grid -Join points to form smooth curve -Discuss properties of ogive curves |
Exercise books
-Manila paper -Ruler -Class data |
KLB Secondary Mathematics Form 4, Pages 52-60
|
|
6 | 3 |
Statistics II
|
Drawing Cumulative Frequency Curves (Ogives)
|
By the end of the
lesson, the learner
should be able to:
-Draw accurate ogives using proper scales -Plot cumulative frequency against upper boundaries -Create smooth curves through plotted points -Label axes and scales correctly |
-Practice plotting on large manila paper -Use rulers for accurate scales -Demonstrate smooth curve drawing technique -Students create their own ogives |
Exercise books
-Manila paper -Ruler -Pencils |
KLB Secondary Mathematics Form 4, Pages 52-60
|
|
6 | 4 |
Statistics II
|
Reading Values from Ogives
|
By the end of the
lesson, the learner
should be able to:
-Read median from cumulative frequency curve -Find quartiles using ogive -Estimate any percentile from the curve -Interpret readings in real-world context |
-Demonstrate reading techniques on large ogive -Practice finding median position (n/2) -Read quartile positions systematically -Students practice reading their own curves |
Exercise books
-Manila paper -Completed ogives -Ruler |
KLB Secondary Mathematics Form 4, Pages 52-60
|
|
6 | 5 |
Statistics II
|
Applications of Ogives
|
By the end of the
lesson, the learner
should be able to:
-Use ogives to solve real-world problems -Find number of values above/below certain points -Calculate percentage of data in given ranges -Compare different datasets using ogives |
-Solve problems about pass rates in examinations -Find how many students scored above average -Calculate percentages for different grade ranges -Use agricultural production data for analysis |
Exercise books
-Manila paper -Real problem datasets -Ruler |
KLB Secondary Mathematics Form 4, Pages 52-60
|
|
6 | 6 |
Statistics II
|
Applications of Ogives
|
By the end of the
lesson, the learner
should be able to:
-Use ogives to solve real-world problems -Find number of values above/below certain points -Calculate percentage of data in given ranges -Compare different datasets using ogives |
-Solve problems about pass rates in examinations -Find how many students scored above average -Calculate percentages for different grade ranges -Use agricultural production data for analysis |
Exercise books
-Manila paper -Real problem datasets -Ruler |
KLB Secondary Mathematics Form 4, Pages 52-60
|
|
6 | 7 |
Statistics II
|
Introduction to Measures of Dispersion
|
By the end of the
lesson, the learner
should be able to:
-Define dispersion and its importance -Understand limitations of central tendency alone -Compare datasets with same mean but different spread -Identify different measures of dispersion |
-Compare test scores of two classes with same mean -Show how different spreads affect interpretation -Discuss variability in real-world data -Introduce range as simplest measure |
Exercise books
-Manila paper -Comparative datasets -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 60-65
|
|
7 | 1-2 |
Statistics II
|
Range and Interquartile Range
|
By the end of the
lesson, the learner
should be able to:
-Calculate range for different datasets -Find interquartile range (Q3 - Q1) -Calculate quartile deviation (semi-interquartile range) -Compare advantages and limitations of each measure |
-Calculate range for student heights in class -Find IQR for the same data -Discuss effect of outliers on range -Compare IQR stability with range |
Exercise books
-Manila paper -Student data -Measuring tape |
KLB Secondary Mathematics Form 4, Pages 60-65
|
|
7 | 3 |
Statistics II
|
Mean Absolute Deviation
|
By the end of the
lesson, the learner
should be able to:
-Calculate mean absolute deviation -Use absolute values correctly in calculations -Understand concept of average distance from mean -Apply MAD to compare variability in datasets |
-Calculate MAD for class test scores -Practice with absolute value calculations -Compare MAD values for different subjects -Interpret MAD in context of data spread |
Exercise books
-Manila paper -Test score data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
7 | 4 |
Statistics II
|
Introduction to Variance
|
By the end of the
lesson, the learner
should be able to:
-Define variance as mean of squared deviations -Calculate variance using definition formula -Understand why deviations are squared -Compare variance with other dispersion measures |
-Work through variance calculation step by step -Explain squaring deviations eliminates negatives -Calculate variance for simple datasets -Compare with mean absolute deviation |
Exercise books
-Manila paper -Simple datasets -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
7 | 5 |
Statistics II
|
Introduction to Variance
|
By the end of the
lesson, the learner
should be able to:
-Define variance as mean of squared deviations -Calculate variance using definition formula -Understand why deviations are squared -Compare variance with other dispersion measures |
-Work through variance calculation step by step -Explain squaring deviations eliminates negatives -Calculate variance for simple datasets -Compare with mean absolute deviation |
Exercise books
-Manila paper -Simple datasets -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
7 | 6 |
Statistics II
|
Variance Using Alternative Formula
|
By the end of the
lesson, the learner
should be able to:
-Apply the formula: σ² = (Σx²/n) - x̄² -Use alternative variance formula efficiently -Compare computational methods -Solve variance problems for frequency data |
-Demonstrate both variance formulas -Show computational advantages of alternative formula -Practice with frequency tables -Students choose efficient method |
Exercise books
-Manila paper -Frequency data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
7 | 7 |
Statistics II
|
Standard Deviation Calculations
|
By the end of the
lesson, the learner
should be able to:
-Calculate standard deviation as square root of variance -Apply standard deviation to ungrouped data -Use standard deviation to compare datasets -Interpret standard deviation in practical contexts |
-Calculate SD for student exam scores -Compare SD values for different subjects -Interpret what high/low SD means -Use SD to identify consistent performance |
Exercise books
-Manila paper -Exam score data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
8 | 1-2 |
Statistics II
|
Standard Deviation for Grouped Data
|
By the end of the
lesson, the learner
should be able to:
-Calculate standard deviation for frequency distributions -Use working mean with grouped data for SD -Apply coding techniques to simplify calculations -Solve complex grouped data problems |
-Work with agricultural yield data from local farms -Use coding method to simplify calculations -Calculate SD step by step for grouped data -Compare variability in different crops |
Exercise books
-Manila paper -Agricultural data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
8 | 3 |
Statistics II
|
Advanced Standard Deviation Techniques
|
By the end of the
lesson, the learner
should be able to:
-Apply transformation properties of standard deviation -Use coding with class width division -Solve problems with multiple transformations -Verify results using different methods |
-Demonstrate coding transformations -Show how SD changes with data transformations -Practice reverse calculations -Verify using alternative methods |
Exercise books
-Manila paper -Transformation examples -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
8 | 4 |
Loci
|
Introduction to Loci
|
By the end of the
lesson, the learner
should be able to:
-Define locus and understand its meaning -Distinguish between locus of points, lines, and regions -Identify real-world examples of loci -Understand the concept of movement according to given laws |
-Demonstrate door movement to show path traced by corner -Use string and pencil to show circular locus -Discuss examples: clock hands, pendulum swing -Students trace paths of moving objects |
Exercise books
-Manila paper -String -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 73-75
|
|
8 | 5 |
Loci
|
Introduction to Loci
|
By the end of the
lesson, the learner
should be able to:
-Define locus and understand its meaning -Distinguish between locus of points, lines, and regions -Identify real-world examples of loci -Understand the concept of movement according to given laws |
-Demonstrate door movement to show path traced by corner -Use string and pencil to show circular locus -Discuss examples: clock hands, pendulum swing -Students trace paths of moving objects |
Exercise books
-Manila paper -String -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 73-75
|
|
8 | 6 |
Loci
|
Basic Locus Concepts and Laws
|
By the end of the
lesson, the learner
should be able to:
-Understand that loci follow specific laws or conditions -Identify the laws governing different types of movement -Distinguish between 2D and 3D loci -Apply locus concepts to simple problems |
-Physical demonstrations with moving objects -Students track movement of classroom door -Identify laws governing pendulum movement -Practice stating locus laws clearly |
Exercise books
-Manila paper -String -Real objects |
KLB Secondary Mathematics Form 4, Pages 73-75
|
|
8 | 7 |
Loci
|
Perpendicular Bisector Locus
|
By the end of the
lesson, the learner
should be able to:
-Define perpendicular bisector locus -Construct perpendicular bisector using compass and ruler -Prove that points on perpendicular bisector are equidistant from endpoints -Apply perpendicular bisector to solve problems |
-Construct perpendicular bisector on manila paper -Measure distances to verify equidistance property -Use folding method to find perpendicular bisector -Practice with different line segments |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
9 | 1-2 |
Loci
|
Properties and Applications of Perpendicular Bisector
|
By the end of the
lesson, the learner
should be able to:
-Understand perpendicular bisector in 3D space -Apply perpendicular bisector to find circumcenters -Solve practical problems using perpendicular bisector -Use perpendicular bisector in triangle constructions |
-Find circumcenter of triangle using perpendicular bisectors -Solve water pipe problems (equidistant from two points) -Apply to real-world location problems -Practice with various triangle types |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
9 | 3 |
Loci
|
Locus of Points at Fixed Distance from a Point
|
By the end of the
lesson, the learner
should be able to:
-Define circle as locus of points at fixed distance from center -Construct circles with given radius using compass -Understand sphere as 3D locus from fixed point -Solve problems involving circular loci |
-Construct circles of different radii -Demonstrate with string of fixed length -Discuss radar coverage, radio signal range -Students create circles with various measurements |
Exercise books
-Manila paper -Compass -String |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
9 | 4 |
Loci
|
Locus of Points at Fixed Distance from a Point
|
By the end of the
lesson, the learner
should be able to:
-Define circle as locus of points at fixed distance from center -Construct circles with given radius using compass -Understand sphere as 3D locus from fixed point -Solve problems involving circular loci |
-Construct circles of different radii -Demonstrate with string of fixed length -Discuss radar coverage, radio signal range -Students create circles with various measurements |
Exercise books
-Manila paper -Compass -String |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
9 | 5 |
Loci
|
Locus of Points at Fixed Distance from a Line
|
By the end of the
lesson, the learner
should be able to:
-Define locus of points at fixed distance from straight line -Construct parallel lines at given distances -Understand cylindrical surface in 3D -Apply to practical problems like road margins |
-Construct parallel lines using ruler and set square -Mark points at equal distances from given line -Discuss road design, river banks, field boundaries -Practice with various distances and orientations |
Exercise books
-Manila paper -Ruler -Set square |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
9 | 6 |
Loci
|
Angle Bisector Locus
|
By the end of the
lesson, the learner
should be able to:
-Define angle bisector locus -Construct angle bisectors using compass and ruler -Prove equidistance property of angle bisector -Apply angle bisector to find incenters |
-Construct angle bisectors for various angles -Verify equidistance from angle arms -Find incenter of triangle using angle bisectors -Practice with acute, obtuse, and right angles |
Exercise books
-Manila paper -Compass -Protractor |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
9 | 7 |
Loci
|
Properties and Applications of Angle Bisector
|
By the end of the
lesson, the learner
should be able to:
-Understand relationship between angle bisectors in triangles -Apply angle bisector theorem -Solve problems involving inscribed circles -Use angle bisectors in geometric constructions |
-Construct inscribed circle using angle bisectors -Apply angle bisector theorem to solve problems -Find external angle bisectors -Solve practical surveying problems |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
10 | 1-2 |
Loci
|
Constant Angle Locus
|
By the end of the
lesson, the learner
should be able to:
-Understand constant angle locus concept -Construct constant angle loci using arc method -Apply circle theorems to constant angle problems -Solve problems involving angles in semicircles |
-Demonstrate constant angle using protractor -Construct arc passing through two points -Use angles in semicircle property -Practice with different angle measures |
Exercise books
-Manila paper -Compass -Protractor |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
10 | 3 |
Loci
|
Advanced Constant Angle Constructions
|
By the end of the
lesson, the learner
should be able to:
-Construct constant angle loci for various angles -Find centers of constant angle arcs -Solve complex constant angle problems -Apply to geometric theorem proving |
-Find centers for 60°, 90°, 120° angle loci -Construct major and minor arcs -Solve problems involving multiple angle constraints -Verify constructions using measurement |
Exercise books
-Manila paper -Compass -Protractor |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
10 | 4 |
Loci
|
Advanced Constant Angle Constructions
|
By the end of the
lesson, the learner
should be able to:
-Construct constant angle loci for various angles -Find centers of constant angle arcs -Solve complex constant angle problems -Apply to geometric theorem proving |
-Find centers for 60°, 90°, 120° angle loci -Construct major and minor arcs -Solve problems involving multiple angle constraints -Verify constructions using measurement |
Exercise books
-Manila paper -Compass -Protractor |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
10 | 5 |
Loci
|
Introduction to Intersecting Loci
|
By the end of the
lesson, the learner
should be able to:
-Understand concept of intersecting loci -Identify points satisfying multiple conditions -Find intersection points of two loci -Apply intersecting loci to solve practical problems |
-Demonstrate intersection of two circles -Find points equidistant from two points AND at fixed distance from third point -Solve simple two-condition problems -Practice identifying intersection points |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 83-89
|
|
10 | 6 |
Loci
|
Intersecting Circles and Lines
|
By the end of the
lesson, the learner
should be able to:
-Find intersections of circles with lines -Determine intersections of two circles -Solve problems with line and circle combinations -Apply to geometric construction problems |
-Construct intersecting circles and lines -Find common tangents to circles -Solve problems involving circle-line intersections -Apply to wheel and track problems |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 83-89
|
|
10 | 7 |
Loci
|
Intersecting Circles and Lines
|
By the end of the
lesson, the learner
should be able to:
-Find intersections of circles with lines -Determine intersections of two circles -Solve problems with line and circle combinations -Apply to geometric construction problems |
-Construct intersecting circles and lines -Find common tangents to circles -Solve problems involving circle-line intersections -Apply to wheel and track problems |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 83-89
|
|
11 | 1-2 |
Loci
|
Triangle Centers Using Intersecting Loci
Complex Intersecting Loci Problems |
By the end of the
lesson, the learner
should be able to:
-Find circumcenter using perpendicular bisector intersections -Locate incenter using angle bisector intersections -Determine centroid and orthocenter -Apply triangle centers to solve problems -Solve problems with three or more conditions -Find regions satisfying multiple constraints -Apply intersecting loci to optimization problems -Use systematic approach to complex problems |
-Construct all four triangle centers -Compare properties of different triangle centers -Use triangle centers in geometric proofs -Solve problems involving triangle center properties -Solve treasure hunt type problems -Find optimal locations for facilities -Apply to surveying and engineering problems -Practice systematic problem-solving approach |
Exercise books
-Manila paper -Compass -Ruler Exercise books -Manila paper -Compass -Real-world scenarios |
KLB Secondary Mathematics Form 4, Pages 83-89
|
|
11 | 3 |
Loci
|
Introduction to Loci of Inequalities
|
By the end of the
lesson, the learner
should be able to:
-Understand graphical representation of inequalities -Identify regions satisfying inequality conditions -Distinguish between boundary lines and regions -Apply inequality loci to practical constraints |
-Shade regions representing simple inequalities -Use broken and solid lines appropriately -Practice with distance inequalities -Apply to real-world constraint problems |
Exercise books
-Manila paper -Ruler -Colored pencils |
KLB Secondary Mathematics Form 4, Pages 89-92
|
|
11 | 4 |
Loci
|
Introduction to Loci of Inequalities
|
By the end of the
lesson, the learner
should be able to:
-Understand graphical representation of inequalities -Identify regions satisfying inequality conditions -Distinguish between boundary lines and regions -Apply inequality loci to practical constraints |
-Shade regions representing simple inequalities -Use broken and solid lines appropriately -Practice with distance inequalities -Apply to real-world constraint problems |
Exercise books
-Manila paper -Ruler -Colored pencils |
KLB Secondary Mathematics Form 4, Pages 89-92
|
|
11 | 5 |
Loci
|
Distance Inequality Loci
|
By the end of the
lesson, the learner
should be able to:
-Represent distance inequalities graphically -Solve problems with "less than" and "greater than" distances -Find regions satisfying distance constraints -Apply to safety zone problems |
-Shade regions inside and outside circles -Solve exclusion zone problems -Apply to communication range problems -Practice with multiple distance constraints |
Exercise books
-Manila paper -Compass -Colored pencils |
KLB Secondary Mathematics Form 4, Pages 89-92
|
|
11 | 6 |
Loci
|
Combined Inequality Loci
|
By the end of the
lesson, the learner
should be able to:
-Solve problems with multiple inequality constraints -Find intersection regions of inequality loci -Apply to optimization and feasibility problems -Use systematic shading techniques |
-Find feasible regions for multiple constraints -Solve planning problems with restrictions -Apply to resource allocation scenarios -Practice systematic region identification |
Exercise books
-Manila paper -Ruler -Colored pencils |
KLB Secondary Mathematics Form 4, Pages 89-92
|
|
11 | 7 |
Loci
|
Combined Inequality Loci
|
By the end of the
lesson, the learner
should be able to:
-Solve problems with multiple inequality constraints -Find intersection regions of inequality loci -Apply to optimization and feasibility problems -Use systematic shading techniques |
-Find feasible regions for multiple constraints -Solve planning problems with restrictions -Apply to resource allocation scenarios -Practice systematic region identification |
Exercise books
-Manila paper -Ruler -Colored pencils |
KLB Secondary Mathematics Form 4, Pages 89-92
|
|
12 | 1-2 |
Loci
|
Advanced Inequality Applications
Introduction to Loci Involving Chords |
By the end of the
lesson, the learner
should be able to:
-Apply inequality loci to linear programming introduction -Solve real-world optimization problems -Find maximum and minimum values in regions -Use graphical methods for decision making -Review chord properties in circles -Understand perpendicular bisector of chords -Apply chord theorems to loci problems -Construct equal chords in circles |
-Solve simple linear programming problems -Find optimal points in feasible regions -Apply to business and farming scenarios -Practice identifying corner points -Review chord bisector theorem -Construct chords of given lengths -Find centers using chord properties -Practice with chord intersection theorems |
Exercise books
-Manila paper -Ruler -Real problem data Exercise books -Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 89-92
KLB Secondary Mathematics Form 4, Pages 92-94 |
|
12 | 3 |
Loci
|
Introduction to Loci Involving Chords
|
By the end of the
lesson, the learner
should be able to:
-Review chord properties in circles -Understand perpendicular bisector of chords -Apply chord theorems to loci problems -Construct equal chords in circles |
-Review chord bisector theorem -Construct chords of given lengths -Find centers using chord properties -Practice with chord intersection theorems |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 92-94
|
|
12 | 4 |
Loci
|
Chord-Based Constructions
|
By the end of the
lesson, the learner
should be able to:
-Construct circles through three points using chords -Find loci of chord midpoints -Solve problems with intersecting chords -Apply chord properties to geometric constructions |
-Construct circles using three non-collinear points -Find locus of midpoints of parallel chords -Solve chord intersection problems -Practice with chord-tangent relationships |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 92-94
|
|
12 | 5 |
Loci
|
Advanced Chord Problems
|
By the end of the
lesson, the learner
should be able to:
-Solve complex problems involving multiple chords -Apply power of point theorem -Find loci related to chord properties -Use chords in circle geometry proofs |
-Apply intersecting chords theorem -Solve problems with chord-secant relationships -Find loci of points with equal power -Practice with tangent-chord angles |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 92-94
|
|
12 | 6 |
Loci
|
Advanced Chord Problems
|
By the end of the
lesson, the learner
should be able to:
-Solve complex problems involving multiple chords -Apply power of point theorem -Find loci related to chord properties -Use chords in circle geometry proofs |
-Apply intersecting chords theorem -Solve problems with chord-secant relationships -Find loci of points with equal power -Practice with tangent-chord angles |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 92-94
|
|
12 | 7 |
Loci
|
Integration of All Loci Types
|
By the end of the
lesson, the learner
should be able to:
-Combine different types of loci in single problems -Solve comprehensive loci challenges -Apply multiple loci concepts simultaneously -Use loci in geometric investigations |
-Solve multi-step loci problems -Combine circle, line, and angle loci -Apply to real-world complex scenarios -Practice systematic problem-solving |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 73-94
|
Your Name Comes Here