If this scheme pleases you, click here to download.
WK | LSN | STRAND | SUB-STRAND | LESSON LEARNING OUTCOMES | LEARNING EXPERIENCES | KEY INQUIRY QUESTIONS | LEARNING RESOURCES | ASSESSMENT METHODS | REFLECTION |
---|---|---|---|---|---|---|---|---|---|
1 | 1-5 |
Data Handling and Probability
|
Data Interpretation - Calculating median using formula
|
By the end of the
lesson, the learner
should be able to:
Apply the formula for calculating median of grouped data; Identify class boundaries, frequencies, and cumulative frequencies; Show interest in finding median from real-life data. |
Learners consider marks scored by 40 learners in a test presented in a table.
Learners complete the column for cumulative frequency and identify the median class. Learners identify the lower class boundary, cumulative frequency above median class, class width, and frequency of median class to substitute in the formula. |
How do we use the formula to calculate the median of grouped data?
|
-KLB Mathematics Grade 9 Textbook page 253
-Calculator -Graph paper -Chart showing median formula -Worksheets -Manila paper |
-Oral questions
-Written exercise
-Group work assessment
-Assessment rubrics
|
|
1 |
Revision of previous term exam |
||||||||
1 | 3 |
Data Handling and Probability
|
Data Interpretation - Median calculations in real-life situations
|
By the end of the
lesson, the learner
should be able to:
Calculate median in real-life data situations; Apply the median formula to various data sets; Appreciate the role of median in data interpretation. |
Learners are presented with data on number of nights spent by people in a table.
Learners complete the cumulative frequency column and determine the median class. Learners apply the median formula to calculate the median value. |
How is the median used to interpret real-life data?
|
-KLB Mathematics Grade 9 Textbook page 254
-Calculator -Chart with example calculations -Worksheets with real-life data -Manila paper -Colored markers |
-Oral questions
-Written exercise
-Group presentations
-Peer assessment
|
|
1 | 4 |
Data Handling and Probability
|
Data Interpretation - Median calculations in real-life situations
|
By the end of the
lesson, the learner
should be able to:
Calculate median in real-life data situations; Apply the median formula to various data sets; Appreciate the role of median in data interpretation. |
Learners are presented with data on number of nights spent by people in a table.
Learners complete the cumulative frequency column and determine the median class. Learners apply the median formula to calculate the median value. |
How is the median used to interpret real-life data?
|
-KLB Mathematics Grade 9 Textbook page 254
-Calculator -Chart with example calculations -Worksheets with real-life data -Manila paper -Colored markers |
-Oral questions
-Written exercise
-Group presentations
-Peer assessment
|
|
1 | 5 |
Data Handling and Probability
|
Data Interpretation - Median calculations in real-life situations
|
By the end of the
lesson, the learner
should be able to:
Calculate median in real-life data situations; Apply the median formula to various data sets; Appreciate the role of median in data interpretation. |
Learners are presented with data on number of nights spent by people in a table.
Learners complete the cumulative frequency column and determine the median class. Learners apply the median formula to calculate the median value. |
How is the median used to interpret real-life data?
|
-KLB Mathematics Grade 9 Textbook page 254
-Calculator -Chart with example calculations -Worksheets with real-life data -Manila paper -Colored markers |
-Oral questions
-Written exercise
-Group presentations
-Peer assessment
|
|
2 | 1 |
Data Handling and Probability
|
Probability - Equally likely outcomes
|
By the end of the
lesson, the learner
should be able to:
Perform experiments involving equally likely outcomes; Record outcomes of chance experiments; Appreciate that some events have equal chances of occurring. |
Learners work in groups to flip a fair coin 20 times.
Learners record the number of times heads and tails come up. Learners divide the number of times heads or tails comes up by the total number of tosses to find probabilities. |
What makes events equally likely to occur?
|
-KLB Mathematics Grade 9 Textbook page 256
-Coins -Chart paper -Table for recording outcomes -Manila paper -Colored markers |
-Oral questions
-Practical activity
-Group work assessment
-Observation
|
|
2 | 2 |
Data Handling and Probability
|
Probability - Range of probability
|
By the end of the
lesson, the learner
should be able to:
Determine the range of probability of an event; Understand that probability ranges from 0 to 1; Value the concept of probability range in real-life situations. |
Learners use a fair die in this activity and toss it 20 times.
Learners record the number of times each face shows up and calculate relative frequencies. Learners find the sum of the fractions and discuss that probabilities range from 0 to 1. |
What is the range of probability values and what do these values signify?
|
-KLB Mathematics Grade 9 Textbook page 257
-Dice -Table for recording outcomes -Chart showing probability scale (0-1) -Manila paper -Colored markers |
-Oral questions
-Practical activity
-Written exercise
-Group presentations
|
|
2 | 3 |
Data Handling and Probability
|
Probability - Complementary events
|
By the end of the
lesson, the learner
should be able to:
Calculate probability of complementary events; Understand that sum of probabilities of complementary events is 1; Show interest in applying complementary probability in real-life situations. |
Learners discuss examples of complementary events.
Learners solve problems where the probability of one event is given and they need to find the probability of its complement. Learners verify that the sum of probabilities of an event and its complement equals 1. |
How are complementary events related in terms of their probabilities?
|
-KLB Mathematics Grade 9 Textbook page 258
-Calculator -Chart showing complementary events -Worksheets with problems -Manila paper -Colored markers |
-Oral questions
-Written exercise
-Group work assessment
-Observation
|
|
2-3 |
Opener exam |
||||||||
3 | 2 |
Data Handling and Probability
|
Probability - Mutually exclusive events
|
By the end of the
lesson, the learner
should be able to:
Identify mutually exclusive events in real-life situations; Recognize events that cannot occur simultaneously; Appreciate the concept of mutually exclusive events. |
Learners flip a fair coin several times and record the face that shows up.
Learners discuss that heads and tails cannot show up at the same time (mutually exclusive). Learners identify mutually exclusive events from various examples. |
What makes events mutually exclusive?
|
-KLB Mathematics Grade 9 Textbook page 258
-Coins -Chart with examples of mutually exclusive events -Flashcards with different scenarios -Manila paper -Colored markers |
-Oral questions
-Group discussions
-Written exercise
-Observation
|
|
3 | 3 |
Data Handling and Probability
|
Probability - Mutually exclusive events
|
By the end of the
lesson, the learner
should be able to:
Identify mutually exclusive events in real-life situations; Recognize events that cannot occur simultaneously; Appreciate the concept of mutually exclusive events. |
Learners flip a fair coin several times and record the face that shows up.
Learners discuss that heads and tails cannot show up at the same time (mutually exclusive). Learners identify mutually exclusive events from various examples. |
What makes events mutually exclusive?
|
-KLB Mathematics Grade 9 Textbook page 258
-Coins -Chart with examples of mutually exclusive events -Flashcards with different scenarios -Manila paper -Colored markers |
-Oral questions
-Group discussions
-Written exercise
-Observation
|
|
3 | 4 |
Data Handling and Probability
|
Probability - Experiments with mutually exclusive events
|
By the end of the
lesson, the learner
should be able to:
Perform experiments of single chance involving mutually exclusive events; Calculate probability of mutually exclusive events; Value the application of mutually exclusive events in real-life. |
Learners toss a fair die several times and record the numbers that show up.
Learners solve problems involving mutually exclusive events like picking a pen of a specific color from a box. Learners find probabilities of individual events and their union. |
How do we calculate the probability of mutually exclusive events?
|
-KLB Mathematics Grade 9 Textbook page 259
-Dice -Colored objects in boxes -Calculator -Chart showing probability calculations -Worksheets with problems |
-Oral questions
-Practical activity
-Written exercise
-Assessment rubrics
|
|
3 | 5 |
Data Handling and Probability
|
Probability - Independent events
|
By the end of the
lesson, the learner
should be able to:
Perform experiments involving independent events; Understand that outcome of one event doesn't affect another; Show interest in applying independent events probability in real-life. |
Learners toss a fair coin and a fair die at the same time and record outcomes.
Learners repeat the experiment several times. Learners discuss that the outcome of the coin toss doesn't affect the outcome of the die roll (independence). |
What makes events independent from each other?
|
-KLB Mathematics Grade 9 Textbook page 260
-Coins and dice -Table for recording outcomes -Chart showing examples of independent events -Manila paper -Colored markers |
-Oral questions
-Practical activity
-Group discussions
-Observation
|
|
4 | 1 |
Data Handling and Probability
|
Probability - Calculating probabilities of independent events
|
By the end of the
lesson, the learner
should be able to:
Calculate probabilities of independent events; Apply the multiplication rule for independent events; Appreciate the application of independent events in real-life situations. |
Learners solve problems involving independent events.
Learners calculate probabilities of individual events and multiply them to find joint probability. Learners solve problems involving machines breaking down independently and other real-life examples. |
How do we calculate the probability of independent events occurring together?
|
-KLB Mathematics Grade 9 Textbook page 261
-Calculator -Chart showing multiplication rule -Worksheets with problems -Manila paper -Colored markers |
-Oral questions
-Written exercise
-Group presentations
-Assessment rubrics
|
|
4 | 2 |
Data Handling and Probability
|
Probability - Tree diagrams for single outcomes
|
By the end of the
lesson, the learner
should be able to:
Draw a probability tree diagram for a single outcome; Represent probability situations using tree diagrams; Value the use of tree diagrams in organizing probability information. |
Learners write down possible outcomes when a fair coin is flipped once.
Learners find the total number of all outcomes and probability of each outcome. Learners complete a tree diagram with possible outcomes and their probabilities. |
How do tree diagrams help us understand probability situations?
|
-KLB Mathematics Grade 9 Textbook page 262
-Chart paper -Ruler -Worksheets with blank tree diagrams -Chart showing completed tree diagrams -Colored markers |
-Oral questions
-Practical activity
-Group work assessment
-Checklist
|
|
4 | 3 |
Data Handling and Probability
|
Probability - Tree diagrams for single outcomes
|
By the end of the
lesson, the learner
should be able to:
Draw a probability tree diagram for a single outcome; Represent probability situations using tree diagrams; Value the use of tree diagrams in organizing probability information. |
Learners write down possible outcomes when a fair coin is flipped once.
Learners find the total number of all outcomes and probability of each outcome. Learners complete a tree diagram with possible outcomes and their probabilities. |
How do tree diagrams help us understand probability situations?
|
-KLB Mathematics Grade 9 Textbook page 262
-Chart paper -Ruler -Worksheets with blank tree diagrams -Chart showing completed tree diagrams -Colored markers |
-Oral questions
-Practical activity
-Group work assessment
-Checklist
|
|
4 | 4 |
Data Handling and Probability
|
Probability - Complex tree diagrams
|
By the end of the
lesson, the learner
should be able to:
Draw more complex probability tree diagrams; Use tree diagrams to solve probability problems; Appreciate the value of tree diagrams in visualizing probability. |
Learners draw tree diagrams for various probability scenarios like balls of different colors in a bag.
Learners use tree diagrams to find probabilities of different outcomes. Learners interpret tree diagrams to solve probability problems. |
How do we use tree diagrams to solve more complex probability problems?
|
-KLB Mathematics Grade 9 Textbook page 263
-Chart paper -Ruler -Calculator -Chart showing complex tree diagrams -Worksheets with problems -Colored markers |
-Oral questions
-Written exercise
-Group presentations
-Assessment rubrics
|
|
4 | 5 |
Data Handling and Probability
|
Probability - Complex tree diagrams
|
By the end of the
lesson, the learner
should be able to:
|
|
|
|
|
|
5-9 |
Revision and preparation for kejsea |
Your Name Comes Here