Home






SCHEME OF WORK
Mathematics
Form 3 2025
TERM III
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1

REVISION OF PREVIOUS EXAM

2 1
Probability
Introduction
By the end of the lesson, the learner should be able to:
Calculate the experimental probability
Understand probability concepts in daily life
Distinguish between certain and uncertain events
Recognize probability situations
Q/A on uncertain events from daily life experiences
Discussions on weather prediction and game outcomes
Analyzing chance events using coin tossing and dice rolling
Demonstrations using simple probability experiments
Explaining probability language using familiar examples
Chalk and blackboard, coins, dice made from cardboard, exercise books
KLB Mathematics Book Three Pg 262-264
2 2
Probability
Experimental Probability
Experimental Probability applications
By the end of the lesson, the learner should be able to:
Calculate the experimental probability
Conduct probability experiments systematically
Record and analyze experimental data
Compare experimental results with expectations
Q/A on frequency counting using repeated experiments
Discussions on trial repetition and result recording
Solving experimental probability problems using data collection
Demonstrations using coin toss and dice roll experiments
Explaining frequency ratio calculations using practical examples
Chalk and blackboard, coins, cardboard dice, tally charts, exercise books
Chalk and blackboard, extended experimental materials, data recording sheets, exercise books
KLB Mathematics Book Three Pg 262-264
2 3
Probability
Range of Probability Measure
Probability Space
By the end of the lesson, the learner should be able to:
Calculate the range of probability measure
Express probabilities on scale from 0 to 1
Convert between fractions, decimals, and percentages
Interpret probability values correctly
Q/A on probability scale using number line representations
Discussions on probability conversion between forms
Solving probability scale problems using systematic methods
Demonstrations using probability line and scale examples
Explaining scale interpretation using practical scenarios
Chalk and blackboard, number line drawings, probability scale charts, exercise books
Chalk and blackboard, playing cards (locally made), spinners from cardboard, exercise books
KLB Mathematics Book Three Pg 265-266
2 4
Probability
Theoretical Probability
Theoretical Probability advanced
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Apply mathematical reasoning to find probabilities
Use equally likely outcome assumptions
Calculate theoretical probabilities systematically
Q/A on theoretical calculation using mathematical principles
Discussions on equally likely assumptions and calculations
Solving theoretical problems using systematic approaches
Demonstrations using fair dice and unbiased coin examples
Explaining mathematical probability using logical reasoning
Chalk and blackboard, fair dice and coins, probability calculation aids, exercise books
Chalk and blackboard, complex probability materials, advanced calculation aids, exercise books
KLB Mathematics Book Three Pg 266-268
2 5
Probability
Theoretical Probability applications
Combined Events
Combined Events OR probability
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Apply theoretical concepts to real situations
Solve practical probability problems
Interpret results in meaningful contexts
Q/A on practical probability using local examples
Discussions on real-world applications using community scenarios
Solving application problems using theoretical methods
Demonstrations using local games and practical situations
Explaining practical interpretation using meaningful contexts
Chalk and blackboard, local game examples, practical scenario materials, exercise books
Chalk and blackboard, playing cards, multiple dice, Venn diagram drawings, exercise books
Chalk and blackboard, Venn diagram materials, card examples, exercise books
KLB Mathematics Book Three Pg 268-270
3 1
Probability
Independent Events
Independent Events advanced
By the end of the lesson, the learner should be able to:
Find the probability of independent events
Apply multiplication rule for independent events
Calculate "A and B" probabilities
Understand independence concepts
Q/A on multiplication rule using independent event examples
Discussions on independence identification and verification
Solving AND probability problems using systematic calculation
Demonstrations using multiple coin tosses and dice combinations
Explaining multiplication rule using logical reasoning
Chalk and blackboard, multiple coins and dice, independence demonstration materials, exercise books
Chalk and blackboard, playing cards for replacement scenarios, multiple experimental setups, exercise books
KLB Mathematics Book Three Pg 274-275
3 2
Probability
Independent Events applications
Tree Diagrams
By the end of the lesson, the learner should be able to:
Find the probability of independent events
Apply independence to practical problems
Solve complex multi-event scenarios
Integrate independence with other concepts
Q/A on complex event analysis using systematic problem-solving
Discussions on rule selection and application strategies
Solving advanced combined problems using integrated approaches
Demonstrations using complex experimental scenarios
Explaining strategic problem-solving using logical analysis
Chalk and blackboard, complex experimental materials, advanced calculation aids, exercise books
Chalk and blackboard, tree diagram templates, branching materials, exercise books
KLB Mathematics Book Three Pg 278-280
3 3
Probability
Compound Proportion and Rates of Work
Compound Proportion and Rates of Work
Tree Diagrams advanced
Compound Proportions
Compound Proportions applications
By the end of the lesson, the learner should be able to:
Use tree diagrams to find probability
Apply trees to multi-stage problems
Handle complex sequential events
Calculate final probabilities using trees
Q/A on complex tree application using multi-stage examples
Discussions on replacement scenario handling
Solving complex tree problems using systematic calculation
Demonstrations using detailed tree constructions
Explaining systematic probability calculation using tree methods
Chalk and blackboard, complex tree examples, detailed calculation aids, exercise books
Chalk and blackboard, local business examples, calculators if available, exercise books
Chalk and blackboard, construction/farming examples, exercise books
KLB Mathematics Book Three Pg 283-285
3 4
Compound Proportion and Rates of Work
Proportional Parts
Proportional Parts applications
By the end of the lesson, the learner should be able to:
Calculate the proportional parts
Understand proportional division concepts
Apply proportional parts to sharing problems
Solve distribution problems using proportional methods
Q/A on proportional sharing using practical examples
Discussions on fair distribution using ratio concepts
Solving proportional parts problems using systematic division
Demonstrations using sharing scenarios and inheritance examples
Explaining proportional distribution using logical reasoning
Chalk and blackboard, sharing demonstration materials, exercise books
Chalk and blackboard, business partnership examples, exercise books
KLB Mathematics Book Three Pg 291-293
3 5
Compound Proportion and Rates of Work
Rates of Work
Rates of Work and Mixtures
By the end of the lesson, the learner should be able to:
Calculate the rate of work
Understand work rate relationships
Apply time-work-efficiency concepts
Solve basic rate of work problems
Q/A on work rate calculation using practical examples
Discussions on efficiency and time relationships using work scenarios
Solving basic rate of work problems using systematic methods
Demonstrations using construction and labor examples
Explaining work rate concepts using practical work situations
Chalk and blackboard, work scenario examples, exercise books
Chalk and blackboard, mixture demonstration materials, exercise books
KLB Mathematics Book Three Pg 294-295
4

CAT 1

5 1
Vectors (II)
Coordinates in two dimensions
Coordinates in three dimensions
By the end of the lesson, the learner should be able to:
Identify the coordinates of a point in two dimensions
Plot points on coordinate planes accurately
Understand position representation using coordinates
Apply coordinate concepts to practical situations
Q/A on coordinate identification using grid references
Discussions on map reading and location finding
Solving coordinate plotting problems using systematic methods
Demonstrations using classroom grid systems and floor patterns
Explaining coordinate applications using local maps and directions
Chalk and blackboard, squared paper or grid drawn on ground, exercise books
Chalk and blackboard, 3D models made from sticks and clay, exercise books
KLB Mathematics Book Three Pg 221-222
5 2
Vectors (II)
Column and position vectors in three dimensions
Position vectors and applications
Column vectors in terms of unit vectors i, j, k
By the end of the lesson, the learner should be able to:
Find a displacement and represent it in column vector
Calculate the position vector
Express vectors in column form
Apply column vector notation systematically
Q/A on displacement representation using movement examples
Discussions on vector notation using organized column format
Solving column vector problems using systematic methods
Demonstrations using physical movement and direction examples
Explaining vector components using practical displacement
Chalk and blackboard, movement demonstration space, exercise books
Chalk and blackboard, origin marking systems, exercise books
Chalk and blackboard, direction indicators, unit vector reference charts, exercise books
KLB Mathematics Book Three Pg 223-224
5 3
Vectors (II)
Vector operations using unit vectors
Magnitude of a vector in three dimensions
By the end of the lesson, the learner should be able to:
Express vectors in terms of unit vectors
Perform vector addition using unit vector notation
Calculate vector subtraction with i, j, k components
Apply scalar multiplication to unit vectors
Q/A on vector operations using component-wise calculation
Discussions on systematic operation methods
Solving vector operation problems using organized approaches
Demonstrations using component separation and combination
Explaining operation logic using algebraic reasoning
Chalk and blackboard, component calculation aids, exercise books
Chalk and blackboard, 3D measurement aids, exercise books
KLB Mathematics Book Three Pg 226-228
5 4
Vectors (II)
Magnitude applications and unit vectors
Parallel vectors
By the end of the lesson, the learner should be able to:
Calculate the magnitude of a vector in three dimensions
Find unit vectors from given vectors
Apply magnitude concepts to practical problems
Use magnitude in vector normalization
Q/A on magnitude and unit vector relationships
Discussions on normalization and direction finding
Solving magnitude and unit vector problems
Demonstrations using direction and length separation
Explaining practical applications using navigation examples
Chalk and blackboard, direction finding aids, exercise books
Chalk and blackboard, parallel line demonstrations, exercise books
KLB Mathematics Book Three Pg 229-230
5 5
Vectors (II)
Collinearity
Advanced collinearity applications
Proportional division of a line
By the end of the lesson, the learner should be able to:
Show that points are collinear
Apply vector methods to prove collinearity
Test for collinear points using vector techniques
Solve collinearity problems systematically
Q/A on collinearity testing using vector proportion methods
Discussions on point alignment using vector analysis
Solving collinearity problems using systematic verification
Demonstrations using straight-line point examples
Explaining collinearity using geometric alignment concepts
Chalk and blackboard, straight-line demonstrations, exercise books
Chalk and blackboard, complex geometric aids, exercise books
Chalk and blackboard, internal division models, exercise books
KLB Mathematics Book Three Pg 232-234
6 1
Vectors (II)
External division of a line
Combined internal and external division
By the end of the lesson, the learner should be able to:
Divide a line externally in the given ratio
Apply the external division formula
Distinguish between internal and external division
Solve external division problems accurately
Q/A on external division using systematic formula application
Discussions on external point calculation using vector methods
Solving external division problems using careful approaches
Demonstrations using external point construction examples
Explaining external division using extended line concepts
Chalk and blackboard, external division models, exercise books
Chalk and blackboard, combined division models, exercise books
KLB Mathematics Book Three Pg 238-239
6 2
Vectors (II)
Ratio theorem
Advanced ratio theorem applications
By the end of the lesson, the learner should be able to:
Express position vectors
Apply the ratio theorem to geometric problems
Use ratio theorem in complex calculations
Find position vectors using ratio relationships
Q/A on ratio theorem application using systematic methods
Discussions on position vector calculation using ratio methods
Solving ratio theorem problems using organized approaches
Demonstrations using ratio-based position finding
Explaining theorem applications using logical reasoning
Chalk and blackboard, ratio theorem aids, exercise books
Chalk and blackboard, advanced ratio models, exercise books
KLB Mathematics Book Three Pg 240-242
6 3
Vectors (II)
Mid-point
Ratio theorem and midpoint integration
By the end of the lesson, the learner should be able to:
Find the mid-points of the given vectors
Apply midpoint formulas in vector contexts
Use midpoint concepts in geometric problems
Calculate midpoints systematically
Q/A on midpoint calculation using vector averaging methods
Discussions on midpoint applications using geometric examples
Solving midpoint problems using systematic approaches
Demonstrations using midpoint construction and calculation
Explaining midpoint concepts using practical examples
Chalk and blackboard, midpoint demonstration aids, exercise books
Chalk and blackboard, complex problem materials, exercise books
KLB Mathematics Book Three Pg 243
6 4
Vectors (II)
Advanced ratio theorem applications
Applications of vectors in geometry
Rectangle diagonal applications
By the end of the lesson, the learner should be able to:
Use ratio theorem to find the given vectors
Apply ratio theorem to challenging problems
Handle complex geometric applications
Demonstrate comprehensive ratio mastery
Q/A on comprehensive ratio understanding using advanced problems
Discussions on complex ratio relationships
Solving advanced ratio problems using systematic methods
Demonstrations using sophisticated geometric constructions
Explaining mastery using challenging applications
Chalk and blackboard, advanced geometric aids, exercise books
Chalk and blackboard, parallelogram models, exercise books
Chalk and blackboard, rectangle models, exercise books
KLB Mathematics Book Three Pg 246-248
6 5
Vectors (II)
Graphical Methods
Advanced geometric applications
Tables of given relations
By the end of the lesson, the learner should be able to:
Use vectors to show geometric properties
Apply vectors to complex geometric proofs
Solve challenging geometric problems using vectors
Integrate all vector concepts in geometric contexts
Q/A on comprehensive geometric applications using vector methods
Discussions on advanced proof techniques using vectors
Solving complex geometric problems using integrated approaches
Demonstrations using sophisticated geometric constructions
Explaining advanced applications using comprehensive reasoning
Chalk and blackboard, advanced geometric models, exercise books
Chalk and blackboard, ruled paper for tables, exercise books
KLB Mathematics Book Three Pg 248-250
7 1
Graphical Methods
Graphs of given relations
Tables and graphs integration
By the end of the lesson, the learner should be able to:
Draw graphs of given relations
Plot points accurately on coordinate systems
Connect points to show relationships
Interpret graphs from given data
Q/A on graph plotting using coordinate methods
Discussions on point plotting and curve drawing
Solving graph construction problems using systematic plotting
Demonstrations using coordinate systems and curve sketching
Explaining graph interpretation using visual analysis
Chalk and blackboard, graph paper or grids, rulers, exercise books
Chalk and blackboard, graph paper, data examples, exercise books
KLB Mathematics Book Three Pg 300
7 2
Graphical Methods
Introduction to cubic equations
Graphical solution of cubic equations
Advanced cubic solutions
By the end of the lesson, the learner should be able to:
Draw tables of cubic functions
Understand cubic equation characteristics
Prepare cubic function data systematically
Recognize cubic curve patterns
Q/A on cubic function evaluation using systematic calculation
Discussions on cubic equation properties using mathematical analysis
Solving cubic table preparation using organized methods
Demonstrations using cubic function examples
Explaining cubic characteristics using pattern recognition
Chalk and blackboard, cubic function examples, exercise books
Chalk and blackboard, graph paper, cubic equation examples, exercise books
Chalk and blackboard, advanced graph examples, exercise books
KLB Mathematics Book Three Pg 301
7 3
Graphical Methods
Introduction to rates of change
Average rates of change
By the end of the lesson, the learner should be able to:
Calculate the average rates of change
Understand rate of change concepts
Apply rate calculations to practical problems
Interpret rate meanings in context
Q/A on rate calculation using slope methods
Discussions on rate interpretation using practical examples
Solving basic rate problems using systematic calculation
Demonstrations using speed-time and distance examples
Explaining rate concepts using practical analogies
Chalk and blackboard, rate calculation examples, exercise books
Chalk and blackboard, graph paper, rate examples, exercise books
KLB Mathematics Book Three Pg 304-306
7 4
Graphical Methods
Advanced average rates
Introduction to instantaneous rates
By the end of the lesson, the learner should be able to:
Calculate the average rates of change
Handle complex rate scenarios
Apply rates to business and scientific problems
Integrate rate concepts with other topics
Q/A on complex rate applications using advanced scenarios
Discussions on business and scientific rate applications
Solving challenging rate problems using integrated methods
Demonstrations using comprehensive rate examples
Explaining advanced applications using detailed analysis
Chalk and blackboard, advanced rate scenarios, exercise books
Chalk and blackboard, tangent line examples, exercise books
KLB Mathematics Book Three Pg 304-310
7 5
Graphical Methods
Rate of change at an instant
Advanced instantaneous rates
By the end of the lesson, the learner should be able to:
Calculate the rate of change at an instant
Apply instantaneous rate methods systematically
Use graphical techniques for instant rates
Solve practical instantaneous rate problems
Q/A on instantaneous rate calculation using graphical methods
Discussions on tangent line slope interpretation
Solving instantaneous rate problems using systematic approaches
Demonstrations using detailed tangent constructions
Explaining practical applications using real scenarios
Chalk and blackboard, detailed graph examples, exercise books
Chalk and blackboard, advanced rate examples, exercise books
KLB Mathematics Book Three Pg 310-311
8

END OF YEAR EXAM

9

REVISION & CLOSING

10 1
Graphical Methods
Empirical graphs
Advanced empirical methods
By the end of the lesson, the learner should be able to:
Draw the empirical graphs
Understand empirical data representation
Plot experimental data systematically
Analyze empirical relationships
Q/A on empirical data plotting using experimental examples
Discussions on real data representation using practical scenarios
Solving empirical graphing problems using systematic methods
Demonstrations using experimental data examples
Explaining empirical analysis using practical interpretations
Chalk and blackboard, experimental data examples, exercise books
Chalk and blackboard, complex data examples, exercise books
KLB Mathematics Book Three Pg 315-316

Your Name Comes Here


Download

Feedback