Home






SCHEME OF WORK
Mathematics
Form 3 2025
TERM III
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1

SCHOOL OPENING AND OPENER EXAMINATIONS

2 1
Graphical Methods
Tables of given relations
By the end of the lesson, the learner should be able to:
Draw tables of given relations
Construct organized data tables systematically
Prepare data for graphical representation
Understand relationship between variables
Q/A on table construction using systematic data organization
Discussions on variable relationships using practical examples
Solving table preparation problems using organized methods
Demonstrations using data collection and tabulation
Explaining systematic data arrangement using logical procedures
Chalk and blackboard, ruled paper for tables, exercise books
KLB Mathematics Book Three Pg 299
2 2
Graphical Methods
Graphs of given relations
Tables and graphs integration
By the end of the lesson, the learner should be able to:
Draw graphs of given relations
Plot points accurately on coordinate systems
Connect points to show relationships
Interpret graphs from given data
Q/A on graph plotting using coordinate methods
Discussions on point plotting and curve drawing
Solving graph construction problems using systematic plotting
Demonstrations using coordinate systems and curve sketching
Explaining graph interpretation using visual analysis
Chalk and blackboard, graph paper or grids, rulers, exercise books
Chalk and blackboard, graph paper, data examples, exercise books
KLB Mathematics Book Three Pg 300
2 3
Graphical Methods
Introduction to cubic equations
Graphical solution of cubic equations
By the end of the lesson, the learner should be able to:
Draw tables of cubic functions
Understand cubic equation characteristics
Prepare cubic function data systematically
Recognize cubic curve patterns
Q/A on cubic function evaluation using systematic calculation
Discussions on cubic equation properties using mathematical analysis
Solving cubic table preparation using organized methods
Demonstrations using cubic function examples
Explaining cubic characteristics using pattern recognition
Chalk and blackboard, cubic function examples, exercise books
Chalk and blackboard, graph paper, cubic equation examples, exercise books
KLB Mathematics Book Three Pg 301
2 4
Graphical Methods
Advanced cubic solutions
Introduction to rates of change
By the end of the lesson, the learner should be able to:
Draw graphs of cubic equations
Apply graphical methods to complex cubic problems
Handle multiple root scenarios
Verify solutions using graphical analysis
Q/A on advanced cubic graphing using complex examples
Discussions on multiple root identification using graph analysis
Solving challenging cubic problems using systematic methods
Demonstrations using detailed cubic constructions
Explaining verification methods using graphical checking
Chalk and blackboard, advanced graph examples, exercise books
Chalk and blackboard, rate calculation examples, exercise books
KLB Mathematics Book Three Pg 302-304
2 5
Graphical Methods
Average rates of change
Advanced average rates
Introduction to instantaneous rates
By the end of the lesson, the learner should be able to:
Calculate the average rates of change
Apply average rate methods to various functions
Use graphical methods for rate calculation
Solve practical rate problems
Q/A on average rate calculation using graphical methods
Discussions on rate applications using real-world scenarios
Solving average rate problems using systematic approaches
Demonstrations using graph-based rate calculation
Explaining practical applications using meaningful contexts
Chalk and blackboard, graph paper, rate examples, exercise books
Chalk and blackboard, advanced rate scenarios, exercise books
Chalk and blackboard, tangent line examples, exercise books
KLB Mathematics Book Three Pg 304-306
2 6
Graphical Methods
Rate of change at an instant
Advanced instantaneous rates
By the end of the lesson, the learner should be able to:
Calculate the rate of change at an instant
Apply instantaneous rate methods systematically
Use graphical techniques for instant rates
Solve practical instantaneous rate problems
Q/A on instantaneous rate calculation using graphical methods
Discussions on tangent line slope interpretation
Solving instantaneous rate problems using systematic approaches
Demonstrations using detailed tangent constructions
Explaining practical applications using real scenarios
Chalk and blackboard, detailed graph examples, exercise books
Chalk and blackboard, advanced rate examples, exercise books
KLB Mathematics Book Three Pg 310-311
2 7
Graphical Methods
Empirical graphs
Advanced empirical methods
By the end of the lesson, the learner should be able to:
Draw the empirical graphs
Understand empirical data representation
Plot experimental data systematically
Analyze empirical relationships
Q/A on empirical data plotting using experimental examples
Discussions on real data representation using practical scenarios
Solving empirical graphing problems using systematic methods
Demonstrations using experimental data examples
Explaining empirical analysis using practical interpretations
Chalk and blackboard, experimental data examples, exercise books
Chalk and blackboard, complex data examples, exercise books
KLB Mathematics Book Three Pg 315-316
3 1
Circles: Chords and Tangents
Length of an arc
By the end of the lesson, the learner should be able to:
Calculate the length of an arc
Apply arc length formula
Understand arc-radius relationships
Q/A on circle properties and terminology
Discussions on arc measurement concepts
Solving basic arc length problems
Demonstrations of formula application
Explaining arc-angle relationships
Geometrical set, calculators
KLB Mathematics Book Three Pg 124-125
3 2
Circles: Chords and Tangents
Chords
Parallel chords
By the end of the lesson, the learner should be able to:
Calculate the length of a chord
Apply chord properties and theorems
Understand chord-radius relationships
Q/A on chord definition and properties
Discussions on chord calculation methods
Solving basic chord problems
Demonstrations of geometric constructions
Explaining chord theorems
Geometrical set, calculators
KLB Mathematics Book Three Pg 126-128
3 3
Circles: Chords and Tangents
Equal chords
Intersecting chords
Intersecting chords
By the end of the lesson, the learner should be able to:
Find the length of equal chords
Apply equal chord theorems
Solve equal chord problems
Q/A on equal chord properties
Discussions on chord equality conditions
Solving equal chord problems
Demonstrations of proof techniques
Explaining theoretical foundations
Geometrical set, calculators
KLB Mathematics Book Three Pg 131-132
3 4
Circles: Chords and Tangents
Chord properties
Tangent to a circle
By the end of the lesson, the learner should be able to:
Solve comprehensive chord problems
Integrate all chord concepts
Apply chord knowledge systematically
Q/A on comprehensive chord understanding
Discussions on integrated problem-solving
Solving mixed chord problems
Demonstrations of systematic approaches
Explaining complete chord mastery
Geometrical set, calculators
KLB Mathematics Book Three Pg 126-139
3 5
Circles: Chords and Tangents
Tangent to a circle
Properties of tangents to a circle from an external point
By the end of the lesson, the learner should be able to:
Calculate the length of tangent
Calculate the angle between tangents
Apply tangent measurement techniques
Q/A on tangent calculations
Discussions on tangent measurement
Solving tangent calculation problems
Demonstrations of measurement methods
Explaining tangent applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 141-142
3 6
Circles: Chords and Tangents
Tangent properties
Tangents to two circles
By the end of the lesson, the learner should be able to:
Solve comprehensive tangent problems
Apply all tangent concepts
Integrate tangent knowledge systematically
Q/A on comprehensive tangent mastery
Discussions on integrated applications
Solving mixed tangent problems
Demonstrations of complete understanding
Explaining systematic problem-solving
Geometrical set, calculators
KLB Mathematics Book Three Pg 139-147
3 7
Circles: Chords and Tangents
Tangents to two circles
Contact of circles
Contact of circles
By the end of the lesson, the learner should be able to:
Calculate the tangents of transverse common tangents
Find transverse tangent properties
Compare direct and transverse tangents
Q/A on transverse tangent concepts
Discussions on tangent type differences
Solving transverse tangent problems
Demonstrations of comparison methods
Explaining tangent classifications
Geometrical set, calculators
KLB Mathematics Book Three Pg 150-151
4 1
Circles: Chords and Tangents
Circle contact
Angle in alternate segment
By the end of the lesson, the learner should be able to:
Solve problems involving chords, tangents and contact circles
Integrate all contact concepts
Apply comprehensive contact knowledge
Q/A on comprehensive contact understanding
Discussions on integrated problem-solving
Solving complex contact problems
Demonstrations of systematic approaches
Explaining complete contact mastery
Geometrical set, calculators
KLB Mathematics Book Three Pg 154-157
4 2
Circles: Chords and Tangents
Angle in alternate segment
Circumscribed circle
By the end of the lesson, the learner should be able to:
Calculate the angles in alternate segments
Solve complex segment problems
Apply advanced segment theorems
Q/A on advanced segment applications
Discussions on complex angle relationships
Solving challenging segment problems
Demonstrations of sophisticated techniques
Explaining advanced applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 160-161
4 3
Circles: Chords and Tangents
Escribed circles
Centroid
By the end of the lesson, the learner should be able to:
Construct escribed circles
Find escribed circle properties
Apply escription concepts
Q/A on escription concepts
Discussions on escribed circle construction
Solving escription problems
Demonstrations of construction methods
Explaining escription applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 165-166
4 4
Circles: Chords and Tangents
Orthocenter
Circle and triangle relationships
By the end of the lesson, the learner should be able to:
Construct orthocenter
Find orthocenter properties
Apply orthocenter concepts
Q/A on orthocenter concepts
Discussions on orthocenter construction
Solving orthocenter problems
Demonstrations of construction methods
Explaining orthocenter applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 167
4 5
Statistics II
Introduction to Advanced Statistics
Working Mean Concept
Mean Using Working Mean - Simple Data
By the end of the lesson, the learner should be able to:

-Review measures of central tendency from Form 2
-Identify limitations of simple mean calculations
-Understand need for advanced statistical methods
-Recognize patterns in large datasets

-Review mean, median, mode from previous work
-Discuss challenges with large numbers
-Examine real data from Kenya (population, rainfall)
-Q&A on statistical applications in daily life
Exercise books
-Manila paper
-Real data examples
-Chalk/markers
-Sample datasets
-Student data
KLB Secondary Mathematics Form 4, Pages 39-42
4 6
Statistics II
Mean Using Working Mean - Frequency Tables
Mean for Grouped Data Using Working Mean
By the end of the lesson, the learner should be able to:

-Calculate mean using working mean for frequency data
-Apply working mean to discrete frequency distributions
-Use the formula with frequencies correctly
-Solve real-world problems with frequency data

-Demonstrate with family size data from local community
-Practice calculating fx and fd systematically
-Work through examples step-by-step
-Students practice with their own collected data
Exercise books
-Manila paper
-Community data
-Chalk/markers
-Real datasets
KLB Secondary Mathematics Form 4, Pages 42-48
4 7
Statistics II
Advanced Working Mean Techniques
Introduction to Quartiles, Deciles, Percentiles
By the end of the lesson, the learner should be able to:

-Apply coding techniques with working mean
-Divide by class width to simplify further
-Use transformation methods efficiently
-Solve complex grouped data problems

-Demonstrate coding method on chalkboard
-Show how dividing by class width helps
-Practice reverse calculations to get original mean
-Work with economic data from Kenya
Exercise books
-Manila paper
-Economic data
-Chalk/markers
-Student height data
-Measuring tape
KLB Secondary Mathematics Form 4, Pages 42-48
5 1
Statistics II
Calculating Quartiles for Ungrouped Data
Quartiles for Grouped Data
By the end of the lesson, the learner should be able to:

-Find lower quartile, median, upper quartile for raw data
-Apply the position formulas correctly
-Arrange data in ascending order systematically
-Interpret quartile values in context

-Practice with test scores from the class
-Arrange data systematically on chalkboard
-Calculate Q1, Q2, Q3 step by step
-Students work with their own datasets
Exercise books
-Manila paper
-Test score data
-Chalk/markers
-Grade data
KLB Secondary Mathematics Form 4, Pages 49-52
5 2
Statistics II
Deciles and Percentiles Calculations
Introduction to Cumulative Frequency
Drawing Cumulative Frequency Curves (Ogives)
By the end of the lesson, the learner should be able to:

-Calculate specific deciles and percentiles
-Apply interpolation formulas for deciles/percentiles
-Interpret decile and percentile positions
-Use these measures for comparative analysis

-Calculate specific percentiles for class test scores
-Find deciles for sports performance data
-Compare students' positions using percentiles
-Practice with national examination statistics
Exercise books
-Manila paper
-Performance data
-Chalk/markers
-Ruler
-Class data
-Pencils
KLB Secondary Mathematics Form 4, Pages 49-52
5 3
Statistics II
Reading Values from Ogives
Applications of Ogives
By the end of the lesson, the learner should be able to:

-Read median from cumulative frequency curve
-Find quartiles using ogive
-Estimate any percentile from the curve
-Interpret readings in real-world context

-Demonstrate reading techniques on large ogive
-Practice finding median position (n/2)
-Read quartile positions systematically
-Students practice reading their own curves
Exercise books
-Manila paper
-Completed ogives
-Ruler
-Real problem datasets
KLB Secondary Mathematics Form 4, Pages 52-60
5 4
Statistics II
Introduction to Measures of Dispersion
Range and Interquartile Range
By the end of the lesson, the learner should be able to:

-Define dispersion and its importance
-Understand limitations of central tendency alone
-Compare datasets with same mean but different spread
-Identify different measures of dispersion

-Compare test scores of two classes with same mean
-Show how different spreads affect interpretation
-Discuss variability in real-world data
-Introduce range as simplest measure
Exercise books
-Manila paper
-Comparative datasets
-Chalk/markers
-Student data
-Measuring tape
KLB Secondary Mathematics Form 4, Pages 60-65
5 5
Statistics II
Mean Absolute Deviation
Introduction to Variance
By the end of the lesson, the learner should be able to:

-Calculate mean absolute deviation
-Use absolute values correctly in calculations
-Understand concept of average distance from mean
-Apply MAD to compare variability in datasets

-Calculate MAD for class test scores
-Practice with absolute value calculations
-Compare MAD values for different subjects
-Interpret MAD in context of data spread
Exercise books
-Manila paper
-Test score data
-Chalk/markers
-Simple datasets
KLB Secondary Mathematics Form 4, Pages 65-70
5 6
Statistics II
Variance Using Alternative Formula
Standard Deviation Calculations
Standard Deviation for Grouped Data
By the end of the lesson, the learner should be able to:

-Apply the formula: σ² = (Σx²/n) - x̄²
-Use alternative variance formula efficiently
-Compare computational methods
-Solve variance problems for frequency data

-Demonstrate both variance formulas
-Show computational advantages of alternative formula
-Practice with frequency tables
-Students choose efficient method
Exercise books
-Manila paper
-Frequency data
-Chalk/markers
-Exam score data
-Agricultural data
KLB Secondary Mathematics Form 4, Pages 65-70
5 7
Statistics II
Trigonometry III
Advanced Standard Deviation Techniques
Review of Basic Trigonometric Ratios
By the end of the lesson, the learner should be able to:

-Apply transformation properties of standard deviation
-Use coding with class width division
-Solve problems with multiple transformations
-Verify results using different methods

-Demonstrate coding transformations
-Show how SD changes with data transformations
-Practice reverse calculations
-Verify using alternative methods
Exercise books
-Manila paper
-Transformation examples
-Chalk/markers
-Rulers
-Calculators (if available)
KLB Secondary Mathematics Form 4, Pages 65-70
6 1
Trigonometry III
Deriving the Identity sin²θ + cos²θ = 1
Applications of sin²θ + cos²θ = 1
By the end of the lesson, the learner should be able to:

-Understand the derivation of fundamental identity
-Apply Pythagoras theorem to unit circle
-Use the identity to solve trigonometric equations
-Convert between sin, cos using the identity

-Demonstrate using right-angled triangle with hypotenuse 1
-Show algebraic derivation step by step
-Practice substituting values to verify identity
-Solve equations using the fundamental identity
Exercise books
-Manila paper
-Unit circle diagrams
-Calculators
-Trigonometric tables
-Real-world examples
KLB Secondary Mathematics Form 4, Pages 99-103
6 2
Trigonometry III
Additional Trigonometric Identities
Introduction to Waves
By the end of the lesson, the learner should be able to:

-Derive and apply tan θ = sin θ/cos θ
-Use reciprocal ratios (sec, cosec, cot)
-Apply multiple identities in problem solving
-Verify trigonometric identities algebraically

-Demonstrate relationship between tan, sin, cos
-Introduce reciprocal ratios with examples
-Practice identity verification techniques
-Solve composite identity problems
Exercise books
-Manila paper
-Identity reference sheet
-Calculators
-String/rope
-Wave diagrams
KLB Secondary Mathematics Form 4, Pages 99-103
6 3
Trigonometry III
Sine and Cosine Waves
Transformations of Sine Waves
By the end of the lesson, the learner should be able to:

-Plot graphs of y = sin x and y = cos x
-Identify amplitude and period of basic functions
-Compare sine and cosine wave patterns
-Read values from trigonometric graphs

-Plot sin x and cos x on same axes using manila paper
-Mark key points (0°, 90°, 180°, 270°, 360°)
-Measure and compare wave characteristics
-Practice reading values from completed graphs
Exercise books
-Manila paper
-Rulers
-Graph paper (if available)
-Colored pencils
KLB Secondary Mathematics Form 4, Pages 103-109
6 4
Trigonometry III
Period Changes in Trigonometric Functions
Combined Amplitude and Period Transformations
Phase Angles and Wave Shifts
By the end of the lesson, the learner should be able to:

-Understand effect of coefficient on period
-Plot graphs of y = sin(bx) for different values of b
-Calculate periods of transformed functions
-Apply period changes to cyclical phenomena

-Plot y = sin(2x), y = sin(x/2) on manila paper
-Compare periods with y = sin x
-Calculate period using formula 360°/b
-Apply to frequency and musical pitch examples
Exercise books
-Manila paper
-Rulers
-Period calculation charts
-Transformation examples
-Colored pencils
-Phase shift examples
KLB Secondary Mathematics Form 4, Pages 103-109
6 5
Trigonometry III
General Trigonometric Functions
Cosine Wave Transformations
By the end of the lesson, the learner should be able to:

-Work with y = a sin(bx + c) functions
-Identify amplitude, period, and phase angle
-Plot complex trigonometric functions
-Solve problems involving all transformations

-Plot y = 2 sin(3x + 60°) step by step
-Identify all transformation parameters
-Practice reading values from complex waves
-Apply to real-world periodic phenomena
Exercise books
-Manila paper
-Rulers
-Complex function examples
-Temperature data
KLB Secondary Mathematics Form 4, Pages 103-109
6 6
Trigonometry III
Introduction to Trigonometric Equations
Solving Basic Trigonometric Equations
By the end of the lesson, the learner should be able to:

-Understand concept of trigonometric equations
-Identify that trig equations have multiple solutions
-Solve simple equations like sin x = 0.5
-Find all solutions in given ranges

-Demonstrate using unit circle or graphs
-Show why sin x = 0.5 has multiple solutions
-Practice finding principal values
-Use graphs to identify all solutions in range
Exercise books
-Manila paper
-Unit circle diagrams
-Trigonometric tables
-Calculators
-Solution worksheets
KLB Secondary Mathematics Form 4, Pages 109-112
6 7
Trigonometry III
Quadratic Trigonometric Equations
Equations Involving Multiple Angles
Using Graphs to Solve Trigonometric Equations
Trigonometric Equations with Identities
By the end of the lesson, the learner should be able to:

-Solve equations like sin²x - sin x = 0
-Apply factoring techniques to trigonometric equations
-Use substitution methods for complex equations
-Find all solutions systematically

-Demonstrate substitution method (let y = sin x)
-Factor quadratic expressions in trigonometry
-Solve resulting quadratic equations
-Back-substitute to find angle solutions
Exercise books
-Manila paper
-Factoring techniques
-Substitution examples
-Multiple angle examples
-Real applications
-Rulers
-Graphing examples
-Identity reference sheets
-Complex examples
KLB Secondary Mathematics Form 4, Pages 109-112
7-8

END OF TERM EXAMINATIONS

9

MARKING OF EXAMINATIONS AND CLOSING OF THE SCHOOL


Your Name Comes Here


Download

Feedback