Home






SCHEME OF WORK
Mathematics
Form 3 2025
TERM III
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1

SCHOOL OPENING AND OPENER EXAMINATIONS

2 1
Circles: Chords and Tangents
Length of an arc
By the end of the lesson, the learner should be able to:
Calculate the length of an arc
Apply arc length formula
Understand arc-radius relationships
Q/A on circle properties and terminology
Discussions on arc measurement concepts
Solving basic arc length problems
Demonstrations of formula application
Explaining arc-angle relationships
Geometrical set, calculators
KLB Mathematics Book Three Pg 124-125
2 2
Circles: Chords and Tangents
Length of an arc
By the end of the lesson, the learner should be able to:
Calculate the length of an arc
Solve complex arc length problems
Apply arc concepts to real situations
Q/A on advanced arc applications
Discussions on practical arc measurements
Solving complex arc problems
Demonstrations of real-world applications
Explaining engineering and design uses
Geometrical set, calculators
KLB Mathematics Book Three Pg 124-125
2 3
Circles: Chords and Tangents
Chords
By the end of the lesson, the learner should be able to:
Calculate the length of a chord
Apply chord properties and theorems
Understand chord-radius relationships
Q/A on chord definition and properties
Discussions on chord calculation methods
Solving basic chord problems
Demonstrations of geometric constructions
Explaining chord theorems
Geometrical set, calculators
KLB Mathematics Book Three Pg 126-128
2 4
Circles: Chords and Tangents
Parallel chords
By the end of the lesson, the learner should be able to:
Calculate the perpendicular bisector
Find the value of parallel chords
Apply parallel chord properties
Q/A on parallel chord concepts
Discussions on perpendicular bisector properties
Solving parallel chord problems
Demonstrations of construction techniques
Explaining geometric relationships
Geometrical set, calculators
KLB Mathematics Book Three Pg 129-131
2 5
Circles: Chords and Tangents
Equal chords
By the end of the lesson, the learner should be able to:
Find the length of equal chords
Apply equal chord theorems
Solve equal chord problems
Q/A on equal chord properties
Discussions on chord equality conditions
Solving equal chord problems
Demonstrations of proof techniques
Explaining theoretical foundations
Geometrical set, calculators
KLB Mathematics Book Three Pg 131-132
2 6
Circles: Chords and Tangents
Intersecting chords
By the end of the lesson, the learner should be able to:
Calculate the length of intersecting chords
Apply intersecting chord theorem
Understand chord intersection properties
Q/A on chord intersection concepts
Discussions on intersection theorem
Solving basic intersection problems
Demonstrations of theorem application
Explaining geometric proofs
Geometrical set, calculators
KLB Mathematics Book Three Pg 132-135
2 7
Circles: Chords and Tangents
Chord properties
By the end of the lesson, the learner should be able to:
Solve comprehensive chord problems
Integrate all chord concepts
Apply chord knowledge systematically
Q/A on comprehensive chord understanding
Discussions on integrated problem-solving
Solving mixed chord problems
Demonstrations of systematic approaches
Explaining complete chord mastery
Geometrical set, calculators
KLB Mathematics Book Three Pg 126-139
3 1
Circles: Chords and Tangents
Tangent to a circle
By the end of the lesson, the learner should be able to:
Construct a tangent to a circle
Understand tangent properties
Apply tangent construction methods
Q/A on tangent definition and properties
Discussions on tangent construction
Solving basic tangent problems
Demonstrations of construction techniques
Explaining tangent characteristics
Geometrical set, calculators
KLB Mathematics Book Three Pg 139-140
3 2
Circles: Chords and Tangents
Tangent to a circle
By the end of the lesson, the learner should be able to:
Calculate the length of tangent
Calculate the angle between tangents
Apply tangent measurement techniques
Q/A on tangent calculations
Discussions on tangent measurement
Solving tangent calculation problems
Demonstrations of measurement methods
Explaining tangent applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 141-142
3 3
Circles: Chords and Tangents
Properties of tangents to a circle from an external point
By the end of the lesson, the learner should be able to:
State the properties of tangents to a circle from an external point
Apply external tangent properties
Solve external tangent problems
Q/A on external tangent concepts
Discussions on tangent properties
Solving external tangent problems
Demonstrations of property applications
Explaining theoretical foundations
Geometrical set, calculators
KLB Mathematics Book Three Pg 142-144
3 4
Circles: Chords and Tangents
Tangent properties
By the end of the lesson, the learner should be able to:
Solve comprehensive tangent problems
Apply all tangent concepts
Integrate tangent knowledge systematically
Q/A on comprehensive tangent mastery
Discussions on integrated applications
Solving mixed tangent problems
Demonstrations of complete understanding
Explaining systematic problem-solving
Geometrical set, calculators
KLB Mathematics Book Three Pg 139-147
3 5
Circles: Chords and Tangents
Tangents to two circles
By the end of the lesson, the learner should be able to:
Calculate the tangents of direct common tangents
Find direct common tangent properties
Apply two-circle tangent concepts
Q/A on two-circle tangent concepts
Discussions on direct tangent properties
Solving direct tangent problems
Demonstrations of construction methods
Explaining geometric relationships
Geometrical set, calculators
KLB Mathematics Book Three Pg 148-149
3 6
Circles: Chords and Tangents
Tangents to two circles
By the end of the lesson, the learner should be able to:
Calculate the tangents of transverse common tangents
Find transverse tangent properties
Compare direct and transverse tangents
Q/A on transverse tangent concepts
Discussions on tangent type differences
Solving transverse tangent problems
Demonstrations of comparison methods
Explaining tangent classifications
Geometrical set, calculators
KLB Mathematics Book Three Pg 150-151
3 7
Circles: Chords and Tangents
Contact of circles
By the end of the lesson, the learner should be able to:
Calculate the radii of contact circles
Understand internal contact properties
Apply contact circle concepts
Q/A on circle contact concepts
Discussions on internal contact properties
Solving internal contact problems
Demonstrations of contact relationships
Explaining geometric principles
Geometrical set, calculators
KLB Mathematics Book Three Pg 151-153
4 1
Circles: Chords and Tangents
Contact of circles
By the end of the lesson, the learner should be able to:
Calculate the radii of contact circles
Understand external contact properties
Compare internal and external contact
Q/A on external contact concepts
Discussions on contact type differences
Solving external contact problems
Demonstrations of contact analysis
Explaining contact applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 153-154
4 2
Circles: Chords and Tangents
Circle contact
By the end of the lesson, the learner should be able to:
Solve problems involving chords, tangents and contact circles
Integrate all contact concepts
Apply comprehensive contact knowledge
Q/A on comprehensive contact understanding
Discussions on integrated problem-solving
Solving complex contact problems
Demonstrations of systematic approaches
Explaining complete contact mastery
Geometrical set, calculators
KLB Mathematics Book Three Pg 154-157
4 3
Circles: Chords and Tangents
Angle in alternate segment
By the end of the lesson, the learner should be able to:
Calculate the angles in alternate segments
Apply alternate segment theorem
Understand segment angle properties
Q/A on alternate segment concepts
Discussions on segment angle relationships
Solving basic segment problems
Demonstrations of theorem application
Explaining geometric proofs
Geometrical set, calculators
KLB Mathematics Book Three Pg 157-160
4 4
Circles: Chords and Tangents
Angle in alternate segment
Circumscribed circle
By the end of the lesson, the learner should be able to:
Calculate the angles in alternate segments
Solve complex segment problems
Apply advanced segment theorems
Q/A on advanced segment applications
Discussions on complex angle relationships
Solving challenging segment problems
Demonstrations of sophisticated techniques
Explaining advanced applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 160-161
4 5
Circles: Chords and Tangents
Escribed circles
By the end of the lesson, the learner should be able to:
Construct escribed circles
Find escribed circle properties
Apply escription concepts
Q/A on escription concepts
Discussions on escribed circle construction
Solving escription problems
Demonstrations of construction methods
Explaining escription applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 165-166
4 6
Circles: Chords and Tangents
Centroid
By the end of the lesson, the learner should be able to:
Construct centroid
Find centroid properties
Apply centroid concepts
Q/A on centroid definition and properties
Discussions on centroid construction
Solving centroid problems
Demonstrations of construction techniques
Explaining centroid applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 166
4 7
Circles: Chords and Tangents
Orthocenter
By the end of the lesson, the learner should be able to:
Construct orthocenter
Find orthocenter properties
Apply orthocenter concepts
Q/A on orthocenter concepts
Discussions on orthocenter construction
Solving orthocenter problems
Demonstrations of construction methods
Explaining orthocenter applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 167
5 1
Circles: Chords and Tangents
Circle and triangle relationships
By the end of the lesson, the learner should be able to:
Solve comprehensive circle-triangle problems
Integrate all circle and triangle concepts
Apply advanced geometric relationships
Q/A on comprehensive geometric understanding
Discussions on integrated relationships
Solving complex geometric problems
Demonstrations of advanced applications
Explaining sophisticated geometric principles
Geometrical set, calculators
KLB Mathematics Book Three Pg 164-167
5 2
Graphical Methods
Tables of given relations
By the end of the lesson, the learner should be able to:
Draw tables of given relations
Construct organized data tables systematically
Prepare data for graphical representation
Understand relationship between variables
Q/A on table construction using systematic data organization
Discussions on variable relationships using practical examples
Solving table preparation problems using organized methods
Demonstrations using data collection and tabulation
Explaining systematic data arrangement using logical procedures
Chalk and blackboard, ruled paper for tables, exercise books
KLB Mathematics Book Three Pg 299
5 3
Graphical Methods
Graphs of given relations
By the end of the lesson, the learner should be able to:
Draw graphs of given relations
Plot points accurately on coordinate systems
Connect points to show relationships
Interpret graphs from given data
Q/A on graph plotting using coordinate methods
Discussions on point plotting and curve drawing
Solving graph construction problems using systematic plotting
Demonstrations using coordinate systems and curve sketching
Explaining graph interpretation using visual analysis
Chalk and blackboard, graph paper or grids, rulers, exercise books
KLB Mathematics Book Three Pg 300
5 4
Graphical Methods
Tables and graphs integration
By the end of the lesson, the learner should be able to:
Draw tables and graphs of given relations
Integrate table construction with graph plotting
Analyze relationships using both methods
Compare tabular and graphical representations
Q/A on integrated table-graph construction using comprehensive methods
Discussions on data flow from tables to graphs
Solving integrated problems using systematic approaches
Demonstrations using complete data analysis procedures
Explaining relationship analysis using combined methods
Chalk and blackboard, graph paper, data examples, exercise books
KLB Mathematics Book Three Pg 299-300
5 5
Graphical Methods
Introduction to cubic equations
By the end of the lesson, the learner should be able to:
Draw tables of cubic functions
Understand cubic equation characteristics
Prepare cubic function data systematically
Recognize cubic curve patterns
Q/A on cubic function evaluation using systematic calculation
Discussions on cubic equation properties using mathematical analysis
Solving cubic table preparation using organized methods
Demonstrations using cubic function examples
Explaining cubic characteristics using pattern recognition
Chalk and blackboard, cubic function examples, exercise books
KLB Mathematics Book Three Pg 301
5 6
Graphical Methods
Graphical solution of cubic equations
By the end of the lesson, the learner should be able to:
Draw graphs of cubic equations
Plot cubic curves accurately
Use graphs to solve cubic equations
Find roots using graphical methods
Q/A on cubic curve plotting using systematic point plotting
Discussions on curve characteristics and root finding
Solving cubic graphing problems using careful plotting
Demonstrations using cubic curve construction
Explaining root identification using graph analysis
Chalk and blackboard, graph paper, cubic equation examples, exercise books
KLB Mathematics Book Three Pg 302-304
5 7
Graphical Methods
Advanced cubic solutions
By the end of the lesson, the learner should be able to:
Draw graphs of cubic equations
Apply graphical methods to complex cubic problems
Handle multiple root scenarios
Verify solutions using graphical analysis
Q/A on advanced cubic graphing using complex examples
Discussions on multiple root identification using graph analysis
Solving challenging cubic problems using systematic methods
Demonstrations using detailed cubic constructions
Explaining verification methods using graphical checking
Chalk and blackboard, advanced graph examples, exercise books
KLB Mathematics Book Three Pg 302-304
6 1
Graphical Methods
Introduction to rates of change
Average rates of change
By the end of the lesson, the learner should be able to:
Calculate the average rates of change
Understand rate of change concepts
Apply rate calculations to practical problems
Interpret rate meanings in context
Q/A on rate calculation using slope methods
Discussions on rate interpretation using practical examples
Solving basic rate problems using systematic calculation
Demonstrations using speed-time and distance examples
Explaining rate concepts using practical analogies
Chalk and blackboard, rate calculation examples, exercise books
Chalk and blackboard, graph paper, rate examples, exercise books
KLB Mathematics Book Three Pg 304-306
6 2
Graphical Methods
Advanced average rates
By the end of the lesson, the learner should be able to:
Calculate the average rates of change
Handle complex rate scenarios
Apply rates to business and scientific problems
Integrate rate concepts with other topics
Q/A on complex rate applications using advanced scenarios
Discussions on business and scientific rate applications
Solving challenging rate problems using integrated methods
Demonstrations using comprehensive rate examples
Explaining advanced applications using detailed analysis
Chalk and blackboard, advanced rate scenarios, exercise books
KLB Mathematics Book Three Pg 304-310
6 3
Graphical Methods
Introduction to instantaneous rates
By the end of the lesson, the learner should be able to:
Calculate the rate of change at an instant
Understand instantaneous rate concepts
Distinguish between average and instantaneous rates
Apply instant rate methods
Q/A on instantaneous rate concepts using limiting methods
Discussions on instant vs average rate differences
Solving basic instantaneous rate problems
Demonstrations using tangent line concepts
Explaining instantaneous rate using practical examples
Chalk and blackboard, tangent line examples, exercise books
KLB Mathematics Book Three Pg 310-311
6 4
Graphical Methods
Rate of change at an instant
By the end of the lesson, the learner should be able to:
Calculate the rate of change at an instant
Apply instantaneous rate methods systematically
Use graphical techniques for instant rates
Solve practical instantaneous rate problems
Q/A on instantaneous rate calculation using graphical methods
Discussions on tangent line slope interpretation
Solving instantaneous rate problems using systematic approaches
Demonstrations using detailed tangent constructions
Explaining practical applications using real scenarios
Chalk and blackboard, detailed graph examples, exercise books
KLB Mathematics Book Three Pg 310-311
6 5
Graphical Methods
Advanced instantaneous rates
By the end of the lesson, the learner should be able to:
Calculate the rate of change at an instant
Handle complex instantaneous rate scenarios
Apply instant rates to advanced problems
Integrate instantaneous concepts with applications
Q/A on advanced instantaneous applications using complex examples
Discussions on sophisticated rate problems using detailed analysis
Solving challenging instantaneous problems using systematic methods
Demonstrations using comprehensive rate constructions
Explaining advanced applications using detailed reasoning
Chalk and blackboard, advanced rate examples, exercise books
KLB Mathematics Book Three Pg 310-315
6 6
Graphical Methods
Empirical graphs
By the end of the lesson, the learner should be able to:
Draw the empirical graphs
Understand empirical data representation
Plot experimental data systematically
Analyze empirical relationships
Q/A on empirical data plotting using experimental examples
Discussions on real data representation using practical scenarios
Solving empirical graphing problems using systematic methods
Demonstrations using experimental data examples
Explaining empirical analysis using practical interpretations
Chalk and blackboard, experimental data examples, exercise books
KLB Mathematics Book Three Pg 315-316
6 7
Graphical Methods
Advanced empirical methods
By the end of the lesson, the learner should be able to:
Draw the empirical graphs
Apply empirical methods to complex data
Handle large datasets and trends
Interpret empirical results meaningfully
Q/A on advanced empirical techniques using complex datasets
Discussions on trend analysis using systematic methods
Solving challenging empirical problems using organized approaches
Demonstrations using comprehensive data analysis
Explaining advanced interpretations using detailed reasoning
Chalk and blackboard, complex data examples, exercise books
KLB Mathematics Book Three Pg 315-321
7-8

END OF TERM EXAMINATIONS

9

MARKING OF EXAMINATIONS AND CLOSING


Your Name Comes Here


Download

Feedback