If this scheme pleases you, click here to download.
WK | LSN | STRAND | SUB-STRAND | LESSON LEARNING OUTCOMES | LEARNING EXPERIENCES | KEY INQUIRY QUESTIONS | LEARNING RESOURCES | ASSESSMENT METHODS | REFLECTION |
---|---|---|---|---|---|---|---|---|---|
1 | 1 |
Geometry
|
Similarity and Enlargement - Similar figures and properties
|
By the end of the
lesson, the learner
should be able to:
Identify similar figures and their properties; Measure corresponding sides and angles of similar figures; Appreciate the concept of similarity in real-life objects. |
Learners study diagrams of similar cross-sections.
Learners measure the corresponding sides of the cross-sections and find the ratio between them. Learners measure all the corresponding angles and discover that they are equal. |
What makes two figures similar?
|
-KLB Mathematics Grade 9 Textbook page 203
-Ruler -Protractor -Cut-out shapes -Charts showing similar figures -Manila paper |
-Oral questions
-Observation
-Written exercise
-Checklist
|
|
1 | 2 |
Geometry
|
Similarity and Enlargement - Similar figures and properties
|
By the end of the
lesson, the learner
should be able to:
Identify similar figures and their properties; Measure corresponding sides and angles of similar figures; Appreciate the concept of similarity in real-life objects. |
Learners study diagrams of similar cross-sections.
Learners measure the corresponding sides of the cross-sections and find the ratio between them. Learners measure all the corresponding angles and discover that they are equal. |
What makes two figures similar?
|
-KLB Mathematics Grade 9 Textbook page 203
-Ruler -Protractor -Cut-out shapes -Charts showing similar figures -Manila paper |
-Oral questions
-Observation
-Written exercise
-Checklist
|
|
1 | 3 |
Geometry
|
Similarity and Enlargement - Identifying similar objects
|
By the end of the
lesson, the learner
should be able to:
Identify similar objects in the environment; Determine if given figures are similar; Value the concept of similarity in everyday life. |
Learners collect and classify objects according to similarity.
Learners identify pairs of similar figures from given diagrams. Learners discuss real-life examples of similar objects and their properties. |
How do we recognize similar objects in our environment?
|
-KLB Mathematics Grade 9 Textbook page 204
-Ruler -Protractor -Various geometric objects -Charts with examples -Worksheets with diagrams |
-Oral questions
-Group work
-Written exercise
-Observation
|
|
1 | 4 |
Geometry
|
Similarity and Enlargement - Identifying similar objects
|
By the end of the
lesson, the learner
should be able to:
Identify similar objects in the environment; Determine if given figures are similar; Value the concept of similarity in everyday life. |
Learners collect and classify objects according to similarity.
Learners identify pairs of similar figures from given diagrams. Learners discuss real-life examples of similar objects and their properties. |
How do we recognize similar objects in our environment?
|
-KLB Mathematics Grade 9 Textbook page 204
-Ruler -Protractor -Various geometric objects -Charts with examples -Worksheets with diagrams |
-Oral questions
-Group work
-Written exercise
-Observation
|
|
1 | 5 |
Geometry
|
Similarity and Enlargement - Drawing similar figures
|
By the end of the
lesson, the learner
should be able to:
Draw similar figures in different situations; Calculate dimensions of similar figures using scale factors; Enjoy creating similar figures. |
Learners draw triangle ABC with given dimensions (AB=3cm, BC=4cm, and AC=6cm).
Learners are told that triangle PQR is similar to ABC with PQ=4.5cm, and they calculate the other dimensions. Learners construct triangle PQR and compare results with other groups. |
How do we construct a figure similar to a given figure?
|
-KLB Mathematics Grade 9 Textbook page 206
-Ruler -Protractor -Pair of compasses -Drawing paper -Calculator -Charts with examples |
-Oral questions
-Practical activity
-Written exercise
-Assessment rubrics
|
|
2 | 1 |
Geometry
|
Similarity and Enlargement - Properties of enlargement
|
By the end of the
lesson, the learner
should be able to:
Determine properties of enlargement of different figures; Locate the center of enlargement and find scale factors; Value the application of enlargement in real-life situations. |
Learners trace diagrams showing an object and its enlarged image.
Learners draw lines through corresponding points to find where they intersect (center of enlargement). Learners find the ratios of corresponding lengths to determine the scale factor. |
How do we determine the center and scale factor of an enlargement?
|
-KLB Mathematics Grade 9 Textbook page 209
-Ruler -Tracing paper -Colored pencils -Grid paper -Charts showing enlargements -Diagrams for tracing |
-Oral questions
-Practical activity
-Written exercise
-Observation
|
|
2 | 2 |
Geometry
|
Similarity and Enlargement - Properties of enlargement
|
By the end of the
lesson, the learner
should be able to:
Determine properties of enlargement of different figures; Locate the center of enlargement and find scale factors; Value the application of enlargement in real-life situations. |
Learners trace diagrams showing an object and its enlarged image.
Learners draw lines through corresponding points to find where they intersect (center of enlargement). Learners find the ratios of corresponding lengths to determine the scale factor. |
How do we determine the center and scale factor of an enlargement?
|
-KLB Mathematics Grade 9 Textbook page 209
-Ruler -Tracing paper -Colored pencils -Grid paper -Charts showing enlargements -Diagrams for tracing |
-Oral questions
-Practical activity
-Written exercise
-Observation
|
|
2 | 3 |
Geometry
|
Similarity and Enlargement - Properties of enlargement
|
By the end of the
lesson, the learner
should be able to:
Determine properties of enlargement of different figures; Locate the center of enlargement and find scale factors; Value the application of enlargement in real-life situations. |
Learners trace diagrams showing an object and its enlarged image.
Learners draw lines through corresponding points to find where they intersect (center of enlargement). Learners find the ratios of corresponding lengths to determine the scale factor. |
How do we determine the center and scale factor of an enlargement?
|
-KLB Mathematics Grade 9 Textbook page 209
-Ruler -Tracing paper -Colored pencils -Grid paper -Charts showing enlargements -Diagrams for tracing |
-Oral questions
-Practical activity
-Written exercise
-Observation
|
|
2 | 4 |
Geometry
|
Similarity and Enlargement - Negative scale factors
|
By the end of the
lesson, the learner
should be able to:
Determine properties of enlargement with negative scale factors; Locate centers of enlargement with negative scale factors; Appreciate the concept of negative scale factors in enlargements. |
Learners trace diagrams showing an object and its image where the center of enlargement is between them.
Learners join corresponding points to locate the center of enlargement. Learners find the ratio of distances from the center to corresponding points and note that the image is on the opposite side of the object. |
What happens when an enlargement has a negative scale factor?
|
-KLB Mathematics Grade 9 Textbook page 211
-Ruler -Tracing paper -Grid paper -Colored pencils -Charts showing negative scale factor enlargements -Diagrams for tracing |
-Oral questions
-Practical activity
-Written exercise
-Checklist
|
|
2 | 5 |
Geometry
|
Similarity and Enlargement - Negative scale factors
|
By the end of the
lesson, the learner
should be able to:
Determine properties of enlargement with negative scale factors; Locate centers of enlargement with negative scale factors; Appreciate the concept of negative scale factors in enlargements. |
Learners trace diagrams showing an object and its image where the center of enlargement is between them.
Learners join corresponding points to locate the center of enlargement. Learners find the ratio of distances from the center to corresponding points and note that the image is on the opposite side of the object. |
What happens when an enlargement has a negative scale factor?
|
-KLB Mathematics Grade 9 Textbook page 211
-Ruler -Tracing paper -Grid paper -Colored pencils -Charts showing negative scale factor enlargements -Diagrams for tracing |
-Oral questions
-Practical activity
-Written exercise
-Checklist
|
|
3 | 1 |
Geometry
|
Similarity and Enlargement - Drawing images of objects
|
By the end of the
lesson, the learner
should be able to:
Apply properties of enlargement to draw similar objects and their images; Use scale factors to determine dimensions of images; Enjoy creating enlarged images of objects. |
Learners trace a given figure and join the center of enlargement to each vertex.
Learners multiply each distance by the scale factor to locate the image points. Learners locate the image points and join them to create the enlarged figure. |
How do we draw the image of an object under an enlargement with a given center and scale factor?
|
-KLB Mathematics Grade 9 Textbook page 214
-Ruler -Grid paper -Colored pencils -Charts showing steps of enlargement -Manila paper |
-Oral questions
-Practical activity
-Written exercise
-Peer assessment
|
|
3 | 2 |
Geometry
|
Similarity and Enlargement - Linear scale factor
|
By the end of the
lesson, the learner
should be able to:
Determine the linear scale factor of similar figures; Calculate unknown dimensions using linear scale factors; Value the application of linear scale factors in real-life problems. |
Learners consider similar cones and find the ratios of their corresponding dimensions.
Learners study similar triangles and calculate the linear scale factor. Learners use the scale factor to find unknown dimensions of similar figures. |
How do we use linear scale factors to calculate unknown dimensions of similar figures?
|
-KLB Mathematics Grade 9 Textbook page 216
-Ruler -Calculator -Similar objects of different sizes -Charts with examples -Worksheets |
-Oral questions
-Group work
-Written exercise
-Assessment rubrics
|
|
3 | 3 |
Geometry
|
Similarity and Enlargement - Linear scale factor
|
By the end of the
lesson, the learner
should be able to:
Determine the linear scale factor of similar figures; Calculate unknown dimensions using linear scale factors; Value the application of linear scale factors in real-life problems. |
Learners consider similar cones and find the ratios of their corresponding dimensions.
Learners study similar triangles and calculate the linear scale factor. Learners use the scale factor to find unknown dimensions of similar figures. |
How do we use linear scale factors to calculate unknown dimensions of similar figures?
|
-KLB Mathematics Grade 9 Textbook page 216
-Ruler -Calculator -Similar objects of different sizes -Charts with examples -Worksheets |
-Oral questions
-Group work
-Written exercise
-Assessment rubrics
|
|
3 | 4 |
Geometry
|
Similarity and Enlargement - Using coordinates in enlargement
|
By the end of the
lesson, the learner
should be able to:
Find the coordinates of images under enlargement; Determine the center of enlargement and scale factor from given coordinates; Appreciate the use of coordinates in describing enlargements. |
Learners plot figures and their images on a grid.
Learners find the center of enlargement by drawing lines through corresponding points. Learners calculate the scale factor using the coordinates of corresponding points. |
How do we use coordinate geometry to describe and perform enlargements?
|
-KLB Mathematics Grade 9 Textbook page 218
-Grid paper -Ruler -Colored pencils -Calculator -Charts with coordinate examples |
-Oral questions
-Practical activity
-Written exercise
-Observation
|
|
3 | 5 |
Geometry
|
Similarity and Enlargement - Using coordinates in enlargement
|
By the end of the
lesson, the learner
should be able to:
Find the coordinates of images under enlargement; Determine the center of enlargement and scale factor from given coordinates; Appreciate the use of coordinates in describing enlargements. |
Learners plot figures and their images on a grid.
Learners find the center of enlargement by drawing lines through corresponding points. Learners calculate the scale factor using the coordinates of corresponding points. |
How do we use coordinate geometry to describe and perform enlargements?
|
-KLB Mathematics Grade 9 Textbook page 218
-Grid paper -Ruler -Colored pencils -Calculator -Charts with coordinate examples |
-Oral questions
-Practical activity
-Written exercise
-Observation
|
|
4 | 1 |
Geometry
|
Similarity and Enlargement - Applications of similarity
|
By the end of the
lesson, the learner
should be able to:
Apply similarity concepts to solve real-life problems; Calculate heights and distances using similar triangles; Value the practical applications of similarity in everyday life. |
Learners solve problems involving similar triangles to find unknown heights and distances.
Learners discuss how similarity is used in fields such as architecture, photography, and engineering. Learners work on practical applications of similarity in the environment. |
How can we use similarity to solve real-life problems?
|
-KLB Mathematics Grade 9 Textbook page 219
-Ruler -Calculator -Drawing paper -Charts with real-life applications -Manila paper for presentations |
-Oral questions
-Problem-solving
-Written exercise
-Group presentation
|
|
4 | 2 |
Geometry
|
Similarity and Enlargement - Applications of similarity
|
By the end of the
lesson, the learner
should be able to:
Apply similarity concepts to solve real-life problems; Calculate heights and distances using similar triangles; Value the practical applications of similarity in everyday life. |
Learners solve problems involving similar triangles to find unknown heights and distances.
Learners discuss how similarity is used in fields such as architecture, photography, and engineering. Learners work on practical applications of similarity in the environment. |
How can we use similarity to solve real-life problems?
|
-KLB Mathematics Grade 9 Textbook page 219
-Ruler -Calculator -Drawing paper -Charts with real-life applications -Manila paper for presentations |
-Oral questions
-Problem-solving
-Written exercise
-Group presentation
|
|
4 | 3 |
Geometry
|
Trigonometry - Angles and sides of right-angled triangles
|
By the end of the
lesson, the learner
should be able to:
Identify angles and sides of right-angled triangles in different situations; Distinguish between the hypotenuse, adjacent side, and opposite side; Appreciate the relationship between angles and sides in right-angled triangles. |
Learners draw right-angled triangles with acute angles and identify the longest side (hypotenuse).
Learners identify the side which together with the hypotenuse forms the angle θ (adjacent side). Learners identify the side facing the angle θ (opposite side). |
How do we identify different sides in a right-angled triangle?
|
-KLB Mathematics Grade 9 Textbook page 220
-Ruler -Protractor -Set square -Drawing paper -Charts with labeled triangles -Colored markers |
-Oral questions
-Observation
-Written exercise
-Checklist
|
|
4 | 4 |
Geometry
|
Trigonometry - Angles and sides of right-angled triangles
|
By the end of the
lesson, the learner
should be able to:
Identify angles and sides of right-angled triangles in different situations; Distinguish between the hypotenuse, adjacent side, and opposite side; Appreciate the relationship between angles and sides in right-angled triangles. |
Learners draw right-angled triangles with acute angles and identify the longest side (hypotenuse).
Learners identify the side which together with the hypotenuse forms the angle θ (adjacent side). Learners identify the side facing the angle θ (opposite side). |
How do we identify different sides in a right-angled triangle?
|
-KLB Mathematics Grade 9 Textbook page 220
-Ruler -Protractor -Set square -Drawing paper -Charts with labeled triangles -Colored markers |
-Oral questions
-Observation
-Written exercise
-Checklist
|
|
4 | 5 |
Geometry
|
Trigonometry - Sine ratio
|
By the end of the
lesson, the learner
should be able to:
Identify sine ratio from a right-angled triangle; Calculate sine of angles in right-angled triangles; Value the use of sine ratio in solving problems. |
Learners draw triangles with specific angles and sides.
Learners draw perpendiculars from points on one side to another and measure their lengths. Learners calculate ratios of opposite side to hypotenuse for different angles and discover the sine ratio. |
What is the sine of an angle and how do we calculate it?
|
-KLB Mathematics Grade 9 Textbook page 222
-Ruler -Protractor -Calculator -Drawing paper -Charts showing sine ratio -Manila paper |
-Oral questions
-Practical activity
-Written exercise
-Assessment rubrics
|
|
5 |
MID TERM ASSESSMENT |
||||||||
6 | 1 |
Geometry
|
Trigonometry - Cosine ratio
|
By the end of the
lesson, the learner
should be able to:
Identify cosine ratio from a right-angled triangle; Calculate cosine of angles in right-angled triangles; Enjoy solving problems involving cosine ratio. |
Learners draw triangles with specific angles and sides.
Learners calculate ratios of adjacent side to hypotenuse for different angles and discover the cosine ratio. Learners find the cosine of marked angles in various right-angled triangles. |
What is the cosine of an angle and how do we calculate it?
|
-KLB Mathematics Grade 9 Textbook page 223
-Ruler -Protractor -Calculator -Drawing paper -Charts showing cosine ratio -Worksheets |
-Oral questions
-Practical activity
-Written exercise
-Observation
|
|
6 | 2 |
Geometry
|
Trigonometry - Cosine ratio
|
By the end of the
lesson, the learner
should be able to:
Identify cosine ratio from a right-angled triangle; Calculate cosine of angles in right-angled triangles; Enjoy solving problems involving cosine ratio. |
Learners draw triangles with specific angles and sides.
Learners calculate ratios of adjacent side to hypotenuse for different angles and discover the cosine ratio. Learners find the cosine of marked angles in various right-angled triangles. |
What is the cosine of an angle and how do we calculate it?
|
-KLB Mathematics Grade 9 Textbook page 223
-Ruler -Protractor -Calculator -Drawing paper -Charts showing cosine ratio -Worksheets |
-Oral questions
-Practical activity
-Written exercise
-Observation
|
|
6 | 3 |
Geometry
|
Trigonometry - Cosine ratio
|
By the end of the
lesson, the learner
should be able to:
Identify cosine ratio from a right-angled triangle; Calculate cosine of angles in right-angled triangles; Enjoy solving problems involving cosine ratio. |
Learners draw triangles with specific angles and sides.
Learners calculate ratios of adjacent side to hypotenuse for different angles and discover the cosine ratio. Learners find the cosine of marked angles in various right-angled triangles. |
What is the cosine of an angle and how do we calculate it?
|
-KLB Mathematics Grade 9 Textbook page 223
-Ruler -Protractor -Calculator -Drawing paper -Charts showing cosine ratio -Worksheets |
-Oral questions
-Practical activity
-Written exercise
-Observation
|
|
6 | 4 |
Geometry
|
Trigonometry - Tangent ratio
|
By the end of the
lesson, the learner
should be able to:
Identify tangent ratio from a right-angled triangle; Calculate tangent of angles in right-angled triangles; Appreciate the importance of tangent ratio in problem-solving. |
Learners draw triangle ABC with specific angles and mark points on BC.
Learners draw perpendiculars from these points to AC and measure their lengths. Learners calculate ratios of opposite side to adjacent side for different angles and discover the tangent ratio. |
What is the tangent of an angle and how do we calculate it?
|
-KLB Mathematics Grade 9 Textbook page 225
-Ruler -Protractor -Calculator -Drawing paper -Charts showing tangent ratio -Manila paper |
-Oral questions
-Practical activity
-Written exercise
-Checklist
|
|
6 | 5 |
Geometry
|
Trigonometry - Tangent ratio
|
By the end of the
lesson, the learner
should be able to:
Identify tangent ratio from a right-angled triangle; Calculate tangent of angles in right-angled triangles; Appreciate the importance of tangent ratio in problem-solving. |
Learners draw triangle ABC with specific angles and mark points on BC.
Learners draw perpendiculars from these points to AC and measure their lengths. Learners calculate ratios of opposite side to adjacent side for different angles and discover the tangent ratio. |
What is the tangent of an angle and how do we calculate it?
|
-KLB Mathematics Grade 9 Textbook page 225
-Ruler -Protractor -Calculator -Drawing paper -Charts showing tangent ratio -Manila paper |
-Oral questions
-Practical activity
-Written exercise
-Checklist
|
|
7 | 1 |
Geometry
|
Trigonometry - Reading tables of sines
|
By the end of the
lesson, the learner
should be able to:
Read tables of trigonometric ratios of acute angles; Find the sine values of different angles using tables; Value the importance of mathematical tables in finding trigonometric ratios. |
Learners study a part of the table of sines.
Learners use the table to look for specific angles and find their sine values. Learners find sine values of angles with decimal parts using the 'ADD' column in the tables. |
How do we use mathematical tables to find the sine of an angle?
|
-KLB Mathematics Grade 9 Textbook page 227
-Mathematical tables -Calculator -Worksheets -Chart showing how to read tables -Sample exercises |
-Oral questions
-Practical activity
-Written exercise
-Assessment rubrics
|
|
7 | 2 |
Geometry
|
Trigonometry - Reading tables of sines
|
By the end of the
lesson, the learner
should be able to:
Read tables of trigonometric ratios of acute angles; Find the sine values of different angles using tables; Value the importance of mathematical tables in finding trigonometric ratios. |
Learners study a part of the table of sines.
Learners use the table to look for specific angles and find their sine values. Learners find sine values of angles with decimal parts using the 'ADD' column in the tables. |
How do we use mathematical tables to find the sine of an angle?
|
-KLB Mathematics Grade 9 Textbook page 227
-Mathematical tables -Calculator -Worksheets -Chart showing how to read tables -Sample exercises |
-Oral questions
-Practical activity
-Written exercise
-Assessment rubrics
|
|
7 | 3 |
Geometry
|
Trigonometry - Reading tables of cosines and tangents
|
By the end of the
lesson, the learner
should be able to:
Read tables of cosines and tangents for acute angles; Find cosine and tangent values using mathematical tables; Enjoy using mathematical tables to find trigonometric ratios. |
Learners study parts of the tables of cosines and tangents.
Learners use the tables to find cosine and tangent values of specific angles. Learners find values of angles with decimal parts using the 'SUBTRACT' column for cosines and 'ADD' column for tangents. |
How do we use mathematical tables to find cosine and tangent values?
|
-KLB Mathematics Grade 9 Textbook page 229-231
-Mathematical tables -Calculator -Worksheets -Chart showing how to read tables -Sample exercises |
-Oral questions
-Practical activity
-Written exercise
-Observation
|
|
7 | 4 |
Geometry
|
Trigonometry - Reading tables of cosines and tangents
|
By the end of the
lesson, the learner
should be able to:
Read tables of cosines and tangents for acute angles; Find cosine and tangent values using mathematical tables; Enjoy using mathematical tables to find trigonometric ratios. |
Learners study parts of the tables of cosines and tangents.
Learners use the tables to find cosine and tangent values of specific angles. Learners find values of angles with decimal parts using the 'SUBTRACT' column for cosines and 'ADD' column for tangents. |
How do we use mathematical tables to find cosine and tangent values?
|
-KLB Mathematics Grade 9 Textbook page 229-231
-Mathematical tables -Calculator -Worksheets -Chart showing how to read tables -Sample exercises |
-Oral questions
-Practical activity
-Written exercise
-Observation
|
|
7 | 5 |
Geometry
|
Trigonometry - Using calculators for trigonometric ratios
|
By the end of the
lesson, the learner
should be able to:
Determine trigonometric ratios of acute angles using calculators; Compare values obtained from tables and calculators; Value the use of calculators in finding trigonometric ratios. |
Learners use calculators to find trigonometric ratios of specific angles.
Learners compare values obtained from calculators with those from mathematical tables. Learners use calculators to find sine, cosine, and tangent of various angles. |
How do we use calculators to find trigonometric ratios?
|
-KLB Mathematics Grade 9 Textbook page 233
-Scientific calculators -Mathematical tables -Worksheets -Chart showing calculator keys -Sample exercises |
-Oral questions
-Practical activity
-Written exercise
-Checklist
|
|
8 | 1 |
Geometry
|
Trigonometry - Calculating lengths using trigonometric ratios
|
By the end of the
lesson, the learner
should be able to:
Apply trigonometric ratios to calculate lengths of right-angled triangles; Use sine, cosine, and tangent ratios to find unknown sides; Appreciate the application of trigonometry in solving real-life problems. |
Learners consider a right-angled triangle and find the trigonometric ratio appropriate for finding an unknown side.
Learners find the value of the ratio from tables or calculators and relate it to the expression to find the unknown side. Learners solve problems involving finding sides of right-angled triangles. |
How do we use trigonometric ratios to find unknown sides in right-angled triangles?
|
-KLB Mathematics Grade 9 Textbook page 234
-Scientific calculators -Mathematical tables -Ruler -Drawing paper -Charts with examples -Worksheets |
-Oral questions
-Group work
-Written exercise
-Assessment rubrics
|
|
8 | 2 |
Geometry
|
Trigonometry - Calculating lengths using trigonometric ratios
|
By the end of the
lesson, the learner
should be able to:
Apply trigonometric ratios to calculate lengths of right-angled triangles; Use sine, cosine, and tangent ratios to find unknown sides; Appreciate the application of trigonometry in solving real-life problems. |
Learners consider a right-angled triangle and find the trigonometric ratio appropriate for finding an unknown side.
Learners find the value of the ratio from tables or calculators and relate it to the expression to find the unknown side. Learners solve problems involving finding sides of right-angled triangles. |
How do we use trigonometric ratios to find unknown sides in right-angled triangles?
|
-KLB Mathematics Grade 9 Textbook page 234
-Scientific calculators -Mathematical tables -Ruler -Drawing paper -Charts with examples -Worksheets |
-Oral questions
-Group work
-Written exercise
-Assessment rubrics
|
|
8 | 3 |
Geometry
|
Trigonometry - Calculating angles using trigonometric ratios
|
By the end of the
lesson, the learner
should be able to:
Use trigonometric ratios to calculate angles in right-angled triangles; Apply inverse trigonometric functions to find angles; Enjoy solving problems involving trigonometric ratios. |
Learners consider right-angled triangles with known sides.
Learners calculate trigonometric ratios using the known sides and use tables or calculators to find the corresponding angles. Learners solve problems involving finding angles in right-angled triangles. |
How do we find unknown angles in right-angled triangles using trigonometric ratios?
|
-KLB Mathematics Grade 9 Textbook page 235
-Scientific calculators -Mathematical tables -Ruler -Drawing paper -Charts with examples -Worksheets |
-Oral questions
-Group work
-Written exercise
-Observation
|
|
8 | 4 |
Geometry
|
Trigonometry - Calculating angles using trigonometric ratios
|
By the end of the
lesson, the learner
should be able to:
Use trigonometric ratios to calculate angles in right-angled triangles; Apply inverse trigonometric functions to find angles; Enjoy solving problems involving trigonometric ratios. |
Learners consider right-angled triangles with known sides.
Learners calculate trigonometric ratios using the known sides and use tables or calculators to find the corresponding angles. Learners solve problems involving finding angles in right-angled triangles. |
How do we find unknown angles in right-angled triangles using trigonometric ratios?
|
-KLB Mathematics Grade 9 Textbook page 235
-Scientific calculators -Mathematical tables -Ruler -Drawing paper -Charts with examples -Worksheets |
-Oral questions
-Group work
-Written exercise
-Observation
|
|
8 | 5 |
Geometry
|
Trigonometry - Application in heights and distances
|
By the end of the
lesson, the learner
should be able to:
Apply trigonometric ratios to solve problems involving heights and distances; Calculate heights of objects using angles of elevation; Value the use of trigonometry in real-life situations. |
Learners solve problems involving finding heights of objects like flag poles, towers, and buildings using angles of elevation.
Learners apply sine, cosine, and tangent ratios as appropriate to calculate unknown heights and distances. Learners discuss real-life applications of trigonometry in architecture, navigation, and engineering. |
How do we use trigonometry to find heights and distances in real-life situations?
|
-KLB Mathematics Grade 9 Textbook page 237
-Scientific calculators -Mathematical tables -Ruler -Drawing paper -Charts with real-life examples -Manila paper |
-Oral questions
-Problem-solving
-Written exercise
-Group presentation
|
|
9 | 1 |
Geometry
|
Trigonometry - Application in navigation
|
By the end of the
lesson, the learner
should be able to:
Apply trigonometric ratios in navigation problems; Calculate distances and bearings using trigonometry; Appreciate the importance of trigonometry in navigation. |
Learners solve problems involving finding distances between locations given bearings and distances from a reference point.
Learners calculate bearings between points using trigonometric ratios. Learners discuss how pilots, sailors, and navigators use trigonometry. |
How is trigonometry used in navigation and determining positions?
|
-KLB Mathematics Grade 9 Textbook page 238
-Scientific calculators -Mathematical tables -Ruler -Protractor -Maps -Charts with navigation examples |
-Oral questions
-Problem-solving
-Written exercise
-Assessment rubrics
|
|
9 | 2 |
Geometry
|
Trigonometry - Application in navigation
|
By the end of the
lesson, the learner
should be able to:
Apply trigonometric ratios in navigation problems; Calculate distances and bearings using trigonometry; Appreciate the importance of trigonometry in navigation. |
Learners solve problems involving finding distances between locations given bearings and distances from a reference point.
Learners calculate bearings between points using trigonometric ratios. Learners discuss how pilots, sailors, and navigators use trigonometry. |
How is trigonometry used in navigation and determining positions?
|
-KLB Mathematics Grade 9 Textbook page 238
-Scientific calculators -Mathematical tables -Ruler -Protractor -Maps -Charts with navigation examples |
-Oral questions
-Problem-solving
-Written exercise
-Assessment rubrics
|
|
9 | 3 |
Geometry
|
Trigonometry - Application in navigation
|
By the end of the
lesson, the learner
should be able to:
Apply trigonometric ratios in navigation problems; Calculate distances and bearings using trigonometry; Appreciate the importance of trigonometry in navigation. |
Learners solve problems involving finding distances between locations given bearings and distances from a reference point.
Learners calculate bearings between points using trigonometric ratios. Learners discuss how pilots, sailors, and navigators use trigonometry. |
How is trigonometry used in navigation and determining positions?
|
-KLB Mathematics Grade 9 Textbook page 238
-Scientific calculators -Mathematical tables -Ruler -Protractor -Maps -Charts with navigation examples |
-Oral questions
-Problem-solving
-Written exercise
-Assessment rubrics
|
|
9 | 4 |
Geometry
|
Trigonometry - Review and mixed applications
|
By the end of the
lesson, the learner
should be able to:
Apply trigonometric concepts in mixed application problems; Solve problems involving both scale drawing and trigonometry; Value the integration of different geometric concepts in problem-solving. |
Learners solve a variety of problems that integrate different geometric concepts learned.
Learners apply scale drawing, bearings, similar figures, and trigonometric ratios to solve complex problems. Learners discuss how different geometric concepts interconnect in solving real-world problems. |
How can we integrate different geometric concepts to solve complex problems?
|
-KLB Mathematics Grade 9 Textbook page 240
-Scientific calculators -Mathematical tables -Ruler -Protractor -Drawing paper -Past examination questions |
-Oral questions
-Problem-solving
-Written exercise
-Assessment test
|
|
9 | 5 |
Geometry
|
Trigonometry - Review and mixed applications
|
By the end of the
lesson, the learner
should be able to:
Apply trigonometric concepts in mixed application problems; Solve problems involving both scale drawing and trigonometry; Value the integration of different geometric concepts in problem-solving. |
Learners solve a variety of problems that integrate different geometric concepts learned.
Learners apply scale drawing, bearings, similar figures, and trigonometric ratios to solve complex problems. Learners discuss how different geometric concepts interconnect in solving real-world problems. |
How can we integrate different geometric concepts to solve complex problems?
|
-KLB Mathematics Grade 9 Textbook page 240
-Scientific calculators -Mathematical tables -Ruler -Protractor -Drawing paper -Past examination questions |
-Oral questions
-Problem-solving
-Written exercise
-Assessment test
|
Your Name Comes Here