Home






SCHEME OF WORK
Mathematics
Form 3 2025
TERM III
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1

Opening of schools and opener exam

2 1
Matrices
Real-world matrix multiplication applications
By the end of the lesson, the learner should be able to:
Apply matrix multiplication to practical problems
Solve business and economic applications
Calculate costs, revenues, and quantities
Interpret matrix multiplication results
Q/A on practical applications using local business examples
Discussions on market problems using familiar contexts
Solving real-world problems using matrix methods
Demonstrations using shop keeper scenarios
Explaining result interpretation using meaningful contexts
Chalk and blackboard, local price lists, exercise books
KLB Mathematics Book Three Pg 176-179
2 2
Matrices
Identity matrix
Determinant of 2×2 matrices
By the end of the lesson, the learner should be able to:
Define and identify identity matrices
Understand identity matrix properties
Apply identity matrices in multiplication
Recognize the multiplicative identity role
Q/A on identity concepts using number 1 analogy
Discussions on multiplicative identity using examples
Solving identity problems using pattern recognition
Demonstrations using multiplication by 1 concept
Explaining diagonal properties using visual patterns
Chalk and blackboard, exercise books, pattern cards made from paper
Chalk and blackboard, exercise books, crossed sticks for demonstration
KLB Mathematics Book Three Pg 182-183
2 3
Matrices
Inverse of 2×2 matrices - theory
By the end of the lesson, the learner should be able to:
Understand the concept of matrix inverse
Identify conditions for matrix invertibility
Apply the inverse formula for 2×2 matrices
Understand singular matrices
Q/A on inverse concepts using reciprocal analogy
Discussions on invertibility using determinant conditions
Solving basic inverse problems using formula
Demonstrations using step-by-step method
Explaining singular matrices using zero determinant
Chalk and blackboard, exercise books, fraction examples
KLB Mathematics Book Three Pg 183-185
2 4
Matrices
Inverse of 2×2 matrices - practice
By the end of the lesson, the learner should be able to:
Calculate inverses of 2×2 matrices systematically
Verify inverse calculations through multiplication
Apply inverse properties correctly
Solve complex inverse problems
Q/A on inverse calculation verification methods
Discussions on accuracy checking using multiplication
Solving advanced inverse problems using practice
Demonstrations using verification procedures
Explaining checking methods using examples
Chalk and blackboard, exercise books, scrap paper for verification
KLB Mathematics Book Three Pg 185-187
2 5
Matrices
Introduction to solving simultaneous equations
By the end of the lesson, the learner should be able to:
Understand matrix representation of simultaneous equations
Identify coefficient and constant matrices
Set up matrix equations correctly
Recognize the structure of linear systems
Q/A on equation representation using familiar equations
Discussions on coefficient identification using examples
Solving setup problems using systematic approach
Demonstrations using equation breakdown method
Explaining structure using organized layout
Chalk and blackboard, exercise books, equation examples from previous topics
KLB Mathematics Book Three Pg 188-189
2 6
Matrices
Solving 2×2 simultaneous equations using matrices
By the end of the lesson, the learner should be able to:
Solve 2×2 simultaneous equations using matrix methods
Apply inverse matrix techniques
Verify solutions by substitution
Compare matrix method with other techniques
Q/A on matrix solution methods using step-by-step approach
Discussions on solution verification using substitution
Solving 2×2 systems using complete method
Demonstrations using organized solution process
Explaining method advantages using comparisons
Chalk and blackboard, exercise books, previous elimination method examples
KLB Mathematics Book Three Pg 188-190
2 7
Matrices
Matrix applications in real-world problems
Matrix equation solving
By the end of the lesson, the learner should be able to:
Apply matrix operations to practical scenarios
Solve business, engineering, and scientific problems
Model real situations using matrices
Interpret matrix solutions in context
Q/A on practical applications using local examples
Discussions on modeling using familiar situations
Solving comprehensive problems using matrix tools
Demonstrations using community-based scenarios
Explaining solution interpretation using meaningful contexts
Chalk and blackboard, local business examples, exercise books
Chalk and blackboard, exercise books, algebra reference examples
KLB Mathematics Book Three Pg 168-190
3 1
Formulae and Variations
Introduction to formulae
By the end of the lesson, the learner should be able to:
Define formulae and identify formula components
Recognize formulae in everyday contexts
Understand the relationship between variables
Appreciate the importance of formulae in mathematics
Q/A on familiar formulae from daily life
Discussions on cooking recipes as formulae
Analyzing distance-time relationships using walking examples
Demonstrations using perimeter and area calculations
Explaining formula notation using simple examples
Chalk and blackboard, measuring tape or string, exercise books
KLB Mathematics Book Three Pg 191-193
3 2
Formulae and Variations
Subject of a formula - basic cases
By the end of the lesson, the learner should be able to:
Make simple variables the subject of formulae
Apply inverse operations to rearrange formulae
Understand the concept of subject change
Solve basic subject transformation problems
Q/A on inverse operations using number examples
Discussions on formula rearrangement using balance method
Solving basic subject change problems using step-by-step approach
Demonstrations using see-saw balance analogy
Explaining inverse operations using practical examples
Chalk and blackboard, simple balance (stones and stick), exercise books
KLB Mathematics Book Three Pg 191-193
3 3
Formulae and Variations
Subject of a formula - intermediate cases
By the end of the lesson, the learner should be able to:
Make complex variables the subject of formulae
Handle formulae with fractions and powers
Apply multiple inverse operations systematically
Solve intermediate difficulty problems
Q/A on complex rearrangement using systematic approach
Discussions on fraction handling using common denominators
Solving intermediate problems using organized methods
Demonstrations using step-by-step blackboard work
Explaining systematic approaches using flowcharts
Chalk and blackboard, fraction strips made from paper, exercise books
KLB Mathematics Book Three Pg 191-193
3 4
Formulae and Variations
Subject of a formula - advanced cases
By the end of the lesson, the learner should be able to:
Make variables subject in complex formulae
Handle square roots and quadratic expressions
Apply advanced algebraic manipulation
Solve challenging subject transformation problems
Q/A on advanced manipulation using careful steps
Discussions on square root handling using examples
Solving complex problems using systematic approach
Demonstrations using detailed blackboard work
Explaining quadratic handling using factoring
Chalk and blackboard, squared paper patterns, exercise books
KLB Mathematics Book Three Pg 191-193
3 5
Formulae and Variations
Applications of formula manipulation
Introduction to variation
By the end of the lesson, the learner should be able to:
Apply formula rearrangement to practical problems
Solve real-world problems using formula manipulation
Calculate unknown quantities in various contexts
Interpret results in meaningful situations
Q/A on practical applications using local examples
Discussions on real-world formula use in farming/building
Solving application problems using formula rearrangement
Demonstrations using construction and farming scenarios
Explaining practical interpretation using community examples
Chalk and blackboard, local measurement tools, exercise books
Chalk and blackboard, local price lists from markets, exercise books
KLB Mathematics Book Three Pg 191-193
3 6
Formulae and Variations
Direct variation - introduction
By the end of the lesson, the learner should be able to:
Understand direct proportionality concepts
Recognize direct variation patterns
Use direct variation notation correctly
Calculate constants of proportionality
Q/A on direct relationships using simple examples
Discussions on proportional changes using market scenarios
Solving basic direct variation problems
Demonstrations using doubling and tripling examples
Explaining proportionality using ratio concepts
Chalk and blackboard, beans or stones for counting, exercise books
KLB Mathematics Book Three Pg 194-196
3 7
Sequences and Series
Introduction to sequences and finding terms
By the end of the lesson, the learner should be able to:
Define sequences and identify sequence patterns
Find next terms using established patterns
Recognize different types of sequence patterns
Apply pattern recognition systematically
Q/A on number patterns from daily life
Discussions on counting patterns using classroom arrangements
Solving pattern completion problems step-by-step
Demonstrations using bead or stone arrangements
Explaining sequence terminology and pattern continuation
Chalk and blackboard, stones or beans for patterns, exercise books
KLB Mathematics Book Three Pg 207-208
4 1
Sequences and Series
General term of sequences and applications
By the end of the lesson, the learner should be able to:
Develop general rules for sequences
Express the nth term using algebraic notation
Find specific terms using general formulas
Apply sequence concepts to practical problems
Q/A on rule formulation using systematic approach
Discussions on algebraic expression development
Solving general term and application problems
Demonstrations using position-value relationships
Explaining practical relevance using community examples
Chalk and blackboard, numbered cards made from paper, exercise books
KLB Mathematics Book Three Pg 207-208
4 2
Sequences and Series
Arithmetic sequences and nth term
By the end of the lesson, the learner should be able to:
Define arithmetic sequences and common differences
Calculate common differences correctly
Derive and apply the nth term formula
Solve problems using arithmetic sequence concepts
Q/A on arithmetic patterns using step-by-step examples
Discussions on constant difference patterns and formula derivation
Solving arithmetic sequence problems systematically
Demonstrations using equal-step progressions
Explaining formula structure using algebraic reasoning
Chalk and blackboard, measuring tape or string, exercise books
KLB Mathematics Book Three Pg 209-210
4 3
Sequences and Series
Arithmetic sequence applications
Geometric sequences and nth term
By the end of the lesson, the learner should be able to:
Solve complex arithmetic sequence problems
Apply arithmetic sequences to real-world problems
Handle word problems involving arithmetic sequences
Model practical situations using arithmetic progressions
Q/A on practical applications using local business examples
Discussions on salary progression and savings plans
Solving real-world problems using sequence methods
Demonstrations using employment and finance scenarios
Explaining practical interpretation using meaningful contexts
Chalk and blackboard, local employment/savings examples, exercise books
Chalk and blackboard, objects for doubling demonstrations, exercise books
KLB Mathematics Book Three Pg 209-210
4 4
Sequences and Series
Geometric sequence applications
By the end of the lesson, the learner should be able to:
Solve complex geometric sequence problems
Apply geometric sequences to real-world problems
Handle population growth and depreciation problems
Model exponential patterns using sequences
Q/A on practical applications using population/growth examples
Discussions on exponential growth in nature and economics
Solving real-world problems using geometric methods
Demonstrations using population and business scenarios
Explaining practical interpretation using meaningful contexts
Chalk and blackboard, population/growth data examples, exercise books
KLB Mathematics Book Three Pg 211-213
4 5
Sequences and Series
Arithmetic series and sum formula
By the end of the lesson, the learner should be able to:
Define arithmetic series as sums of sequences
Derive the sum formula for arithmetic series
Apply the arithmetic series formula systematically
Calculate sums efficiently using the formula
Q/A on series concepts using summation examples
Discussions on sequence-to-series relationships and formula derivation
Solving arithmetic series problems using step-by-step approach
Demonstrations using cumulative sum examples
Explaining derivation logic using algebraic reasoning
Chalk and blackboard, counting materials for summation, exercise books
KLB Mathematics Book Three Pg 214-215
4 6
Sequences and Series
Geometric series and applications
By the end of the lesson, the learner should be able to:
Define geometric series and understand convergence
Derive and apply geometric series formulas
Handle finite and infinite geometric series
Apply geometric series to practical situations
Q/A on geometric series concepts using multiplication examples
Discussions on convergence and formula applications
Solving geometric series problems including infinite cases
Demonstrations using geometric sum patterns
Explaining convergence using practical examples
Chalk and blackboard, convergence demonstration materials, exercise books
KLB Mathematics Book Three Pg 216-219
4 7
Sequences and Series
Mixed problems and advanced applications
By the end of the lesson, the learner should be able to:
Combine arithmetic and geometric concepts
Solve complex mixed sequence and series problems
Apply appropriate methods for different types
Model real-world situations using mathematical sequences
Q/A on problem type identification using systematic analysis
Discussions on method selection and comprehensive applications
Solving mixed problems using appropriate techniques
Demonstrations using interdisciplinary scenarios
Explaining method choice using logical reasoning
Chalk and blackboard, mixed problem collections, exercise books
KLB Mathematics Book Three Pg 207-219
5 1
Sequences and Series
Probability
Sequences in nature and technology
Introduction
By the end of the lesson, the learner should be able to:
Identify mathematical patterns in natural phenomena
Analyze sequences in biological and technological contexts
Apply sequence concepts to environmental problems
Appreciate mathematics in the natural and modern world
Q/A on natural and technological patterns using examples
Discussions on biological sequences and digital applications
Solving nature and technology-based problems
Demonstrations using natural pattern examples
Explaining mathematical beauty using real phenomena
Chalk and blackboard, natural and technology examples, exercise books
Chalk and blackboard, coins, dice made from cardboard, exercise books
KLB Mathematics Book Three Pg 207-219
5 2
Probability
Experimental Probability
By the end of the lesson, the learner should be able to:
Calculate the experimental probability
Conduct probability experiments systematically
Record and analyze experimental data
Compare experimental results with expectations
Q/A on frequency counting using repeated experiments
Discussions on trial repetition and result recording
Solving experimental probability problems using data collection
Demonstrations using coin toss and dice roll experiments
Explaining frequency ratio calculations using practical examples
Chalk and blackboard, coins, cardboard dice, tally charts, exercise books
KLB Mathematics Book Three Pg 262-264
5 3
Probability
Experimental Probability applications
By the end of the lesson, the learner should be able to:
Calculate the experimental probability
Apply experimental methods to various scenarios
Handle large sample experiments
Analyze experimental probability patterns
Q/A on advanced experimental techniques using extended trials
Discussions on sample size effects using comparative data
Solving complex experimental problems using systematic methods
Demonstrations using extended experimental procedures
Explaining pattern analysis using accumulated data
Chalk and blackboard, extended experimental materials, data recording sheets, exercise books
KLB Mathematics Book Three Pg 262-264
5 4
Probability
Range of Probability Measure
By the end of the lesson, the learner should be able to:
Calculate the range of probability measure
Express probabilities on scale from 0 to 1
Convert between fractions, decimals, and percentages
Interpret probability values correctly
Q/A on probability scale using number line representations
Discussions on probability conversion between forms
Solving probability scale problems using systematic methods
Demonstrations using probability line and scale examples
Explaining scale interpretation using practical scenarios
Chalk and blackboard, number line drawings, probability scale charts, exercise books
KLB Mathematics Book Three Pg 265-266
5 5
Probability
Probability Space
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Define sample space systematically
List all possible outcomes
Apply sample space concepts
Q/A on outcome listing using systematic enumeration
Discussions on complete outcome identification
Solving sample space problems using organized listing
Demonstrations using dice, cards, and spinner examples
Explaining probability calculation using outcome counting
Chalk and blackboard, playing cards (locally made), spinners from cardboard, exercise books
KLB Mathematics Book Three Pg 266-267
5 6
Probability
Theoretical Probability
Theoretical Probability advanced
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Apply mathematical reasoning to find probabilities
Use equally likely outcome assumptions
Calculate theoretical probabilities systematically
Q/A on theoretical calculation using mathematical principles
Discussions on equally likely assumptions and calculations
Solving theoretical problems using systematic approaches
Demonstrations using fair dice and unbiased coin examples
Explaining mathematical probability using logical reasoning
Chalk and blackboard, fair dice and coins, probability calculation aids, exercise books
Chalk and blackboard, complex probability materials, advanced calculation aids, exercise books
KLB Mathematics Book Three Pg 266-268
5 7
Probability
Theoretical Probability applications
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Apply theoretical concepts to real situations
Solve practical probability problems
Interpret results in meaningful contexts
Q/A on practical probability using local examples
Discussions on real-world applications using community scenarios
Solving application problems using theoretical methods
Demonstrations using local games and practical situations
Explaining practical interpretation using meaningful contexts
Chalk and blackboard, local game examples, practical scenario materials, exercise books
KLB Mathematics Book Three Pg 268-270
6 1
Probability
Combined Events
By the end of the lesson, the learner should be able to:
Find the probability of a combined events
Understand compound events and combinations
Distinguish between different event types
Apply basic combination rules
Q/A on event combination using practical examples
Discussions on exclusive and inclusive event identification
Solving basic combined event problems using visual methods
Demonstrations using card drawing and dice rolling combinations
Explaining combination principles using Venn diagrams
Chalk and blackboard, playing cards, multiple dice, Venn diagram drawings, exercise books
KLB Mathematics Book Three Pg 272-273
6 2
Probability
Combined Events OR probability
By the end of the lesson, the learner should be able to:
Find the probability of a combined events
Apply addition rule for OR events
Calculate "A or B" probabilities
Handle mutually exclusive events
Q/A on addition rule application using systematic methods
Discussions on mutually exclusive identification and calculation
Solving OR probability problems using organized approaches
Demonstrations using card selection and event combination
Explaining addition rule logic using Venn diagrams
Chalk and blackboard, Venn diagram materials, card examples, exercise books
KLB Mathematics Book Three Pg 272-274
6 3
Probability
Independent Events
By the end of the lesson, the learner should be able to:
Find the probability of independent events
Apply multiplication rule for independent events
Calculate "A and B" probabilities
Understand independence concepts
Q/A on multiplication rule using independent event examples
Discussions on independence identification and verification
Solving AND probability problems using systematic calculation
Demonstrations using multiple coin tosses and dice combinations
Explaining multiplication rule using logical reasoning
Chalk and blackboard, multiple coins and dice, independence demonstration materials, exercise books
KLB Mathematics Book Three Pg 274-275
6 4
Probability
Independent Events advanced
Independent Events applications
By the end of the lesson, the learner should be able to:
Find the probability of independent events
Distinguish between independent and dependent events
Apply conditional probability concepts
Handle complex independence scenarios
Q/A on independence verification using mathematical methods
Discussions on dependence concepts using card drawing examples
Solving dependent and independent event problems using systematic approaches
Demonstrations using replacement and non-replacement scenarios
Explaining conditional probability using practical examples
Chalk and blackboard, playing cards for replacement scenarios, multiple experimental setups, exercise books
Chalk and blackboard, complex experimental materials, advanced calculation aids, exercise books
KLB Mathematics Book Three Pg 276-278
6 5
Probability
Tree Diagrams
By the end of the lesson, the learner should be able to:
Draw tree diagrams to show the probability space
Construct tree diagrams systematically
Represent sequential events using trees
Apply tree diagram methods
Q/A on tree construction using step-by-step methods
Discussions on sequential event representation
Solving basic tree diagram problems using systematic drawing
Demonstrations using branching examples and visual organization
Explaining tree structure using logical branching principles
Chalk and blackboard, tree diagram templates, branching materials, exercise books
KLB Mathematics Book Three Pg 282
6 6
Probability
Tree Diagrams advanced
By the end of the lesson, the learner should be able to:
Use tree diagrams to find probability
Apply trees to multi-stage problems
Handle complex sequential events
Calculate final probabilities using trees
Q/A on complex tree application using multi-stage examples
Discussions on replacement scenario handling
Solving complex tree problems using systematic calculation
Demonstrations using detailed tree constructions
Explaining systematic probability calculation using tree methods
Chalk and blackboard, complex tree examples, detailed calculation aids, exercise books
KLB Mathematics Book Three Pg 283-285
6 7
Compound Proportion and Rates of Work
Compound Proportions
By the end of the lesson, the learner should be able to:
Find the compound proportions
Understand compound proportion relationships
Apply compound proportion methods systematically
Solve problems involving multiple variables
Q/A on compound relationships using practical examples
Discussions on multiple variable situations using local scenarios
Solving compound proportion problems using systematic methods
Demonstrations using business and trade examples
Explaining compound proportion logic using step-by-step reasoning
Chalk and blackboard, local business examples, calculators if available, exercise books
KLB Mathematics Book Three Pg 288-290
7 1
Compound Proportion and Rates of Work
Compound Proportions applications
By the end of the lesson, the learner should be able to:
Find the compound proportions
Apply compound proportions to complex problems
Handle multi-step compound proportion scenarios
Solve real-world compound proportion problems
Q/A on advanced compound proportion using complex scenarios
Discussions on multi-variable relationships using practical contexts
Solving challenging compound problems using systematic approaches
Demonstrations using construction and farming examples
Explaining practical applications using community-based scenarios
Chalk and blackboard, construction/farming examples, exercise books
KLB Mathematics Book Three Pg 290-291
7 2
Compound Proportion and Rates of Work
Proportional Parts
Proportional Parts applications
By the end of the lesson, the learner should be able to:
Calculate the proportional parts
Understand proportional division concepts
Apply proportional parts to sharing problems
Solve distribution problems using proportional methods
Q/A on proportional sharing using practical examples
Discussions on fair distribution using ratio concepts
Solving proportional parts problems using systematic division
Demonstrations using sharing scenarios and inheritance examples
Explaining proportional distribution using logical reasoning
Chalk and blackboard, sharing demonstration materials, exercise books
Chalk and blackboard, business partnership examples, exercise books
KLB Mathematics Book Three Pg 291-293
7 3
Compound Proportion and Rates of Work
Rates of Work
By the end of the lesson, the learner should be able to:
Calculate the rate of work
Understand work rate relationships
Apply time-work-efficiency concepts
Solve basic rate of work problems
Q/A on work rate calculation using practical examples
Discussions on efficiency and time relationships using work scenarios
Solving basic rate of work problems using systematic methods
Demonstrations using construction and labor examples
Explaining work rate concepts using practical work situations
Chalk and blackboard, work scenario examples, exercise books
KLB Mathematics Book Three Pg 294-295
7 4
Compound Proportion and Rates of Work
Rates of Work and Mixtures
By the end of the lesson, the learner should be able to:
Calculate the rate of work
Apply work rates to complex scenarios
Handle mixture problems and combinations
Solve advanced rate and mixture problems
Q/A on advanced work rates using complex scenarios
Discussions on mixture problems using practical examples
Solving challenging rate and mixture problems using systematic approaches
Demonstrations using cooking, construction, and manufacturing examples
Explaining mixture concepts using practical applications
Chalk and blackboard, mixture demonstration materials, exercise books
KLB Mathematics Book Three Pg 295-296
8

End of term exam

9

Closing of school


Your Name Comes Here


Download

Feedback