If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 | 4 |
Trigonometry (II)
|
The unit circle
|
By the end of the
lesson, the learner
should be able to:
Draw the unit circle Identify coordinates on the unit circle Understand the unit circle concept |
Q/A on basic circle properties
Discussions on unit circle construction Solving problems using unit circle Demonstrations of circle drawing Explaining unit circle applications |
Calculators, protractors, rulers, pair of compasses
|
KLB Mathematics Book Three Pg 41-42
|
|
1 | 5 |
Trigonometry (II)
|
Trigonometric ratios of angles greater than 90°
|
By the end of the
lesson, the learner
should be able to:
Find the trigonometric values of angles Calculate trigonometric ratios for obtuse angles Apply reference angle concepts |
Q/A on basic trigonometric ratios
Discussions on angle extensions Solving obtuse angle problems Demonstrations of reference angles Explaining quadrant relationships |
Calculators, protractors, rulers, pair of compasses
Calculators, quadrant charts |
KLB Mathematics Book Three Pg 44-45
|
|
1 | 6 |
Trigonometry (II)
|
Trigonometric ratios of negative angles
|
By the end of the
lesson, the learner
should be able to:
Find the trigonometric values of negative angles Apply negative angle identities Solve problems involving negative angles |
Q/A on negative angle concepts
Discussions on angle direction Solving negative angle problems Demonstrations of identity applications Explaining clockwise rotations |
Geoboards, graph books, calculators
|
KLB Mathematics Book Three Pg 48-49
|
|
1 | 7 |
Trigonometry (II)
|
Trigonometric ratios of angles greater than 360°
Use of mathematical tables |
By the end of the
lesson, the learner
should be able to:
Find the trigonometric values of angles greater than 360° Apply coterminal angle concepts Reduce angles to standard position |
Q/A on angle reduction concepts
Discussions on coterminal angles Solving extended angle problems Demonstrations of angle reduction Explaining periodic properties |
Geoboards, graph books, calculators
Mathematical tables, calculators |
KLB Mathematics Book Three Pg 49-51
|
|
2 | 1 |
Trigonometry (II)
|
Use of mathematical tables
|
By the end of the
lesson, the learner
should be able to:
Use mathematical tables to find tan Apply tables for all trigonometric functions Compare table and calculator results |
Q/A on tangent table usage
Discussions on function relationships Solving comprehensive table problems Demonstrations of result verification Explaining table limitations |
Mathematical tables, calculators
|
KLB Mathematics Book Three Pg 55-56
|
|
2 | 2 |
Trigonometry (II)
|
Use of calculators
Radian measure |
By the end of the
lesson, the learner
should be able to:
Use calculators to find sine, cosine and tan Apply calculator functions for trigonometry Verify calculator accuracy |
Q/A on calculator trigonometric functions
Discussions on calculator modes Solving problems using calculators Demonstrations of function keys Explaining degree vs radian modes |
Calculators, function guides
Calculators, conversion charts |
KLB Mathematics Book Three Pg 56-58
|
|
2 | 3 |
Trigonometry (II)
|
Simple trigonometric graphs
Graphs of cosines |
By the end of the
lesson, the learner
should be able to:
Draw tables for sine of values Plot graphs of sine functions Identify sine graph properties |
Q/A on coordinate graphing
Discussions on periodic functions Solving graphing problems Demonstrations of sine plotting Explaining graph characteristics |
Calculators, graph papers, plotting guides
|
KLB Mathematics Book Three Pg 62-63
|
|
2 | 4 |
Trigonometry (II)
|
Graphs of tan
|
By the end of the
lesson, the learner
should be able to:
Draw tables for tan of values Plot graphs of tan functions Identify asymptotes and discontinuities |
Q/A on tangent behavior
Discussions on function domains Solving tangent graphing problems Demonstrations of asymptote identification Explaining discontinuous functions |
Calculators, graph papers, plotting guides
|
KLB Mathematics Book Three Pg 64-65
|
|
2 | 5 |
Trigonometry (II)
|
The sine rule
Cosine rule |
By the end of the
lesson, the learner
should be able to:
State the sine rule Apply sine rule to find solution of triangles Solve triangles using sine rule |
Q/A on triangle properties
Discussions on sine rule applications Solving triangle problems Demonstrations of rule application Explaining ambiguous case |
Calculators, triangle worksheets
|
KLB Mathematics Book Three Pg 65-70
|
|
2 | 6 |
Trigonometry (II)
Circles: Chords and Tangents |
Problem solving
Length of an arc |
By the end of the
lesson, the learner
should be able to:
Solve problems on cosines, sines and tan Apply trigonometry to real-world situations Integrate all trigonometric concepts |
Q/A on chapter consolidation
Discussions on practical applications Solving comprehensive problems Demonstrations of problem-solving strategies Explaining real-world trigonometry |
Calculators, comprehensive problem sets, real-world examples
Geometrical set, calculators |
KLB Mathematics Book Three Pg 76-77
|
|
2 | 7 |
Circles: Chords and Tangents
|
Length of an arc
|
By the end of the
lesson, the learner
should be able to:
Calculate the length of an arc Solve complex arc length problems Apply arc concepts to real situations |
Q/A on advanced arc applications
Discussions on practical arc measurements Solving complex arc problems Demonstrations of real-world applications Explaining engineering and design uses |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 124-125
|
|
3 | 1 |
Circles: Chords and Tangents
|
Chords
Parallel chords |
By the end of the
lesson, the learner
should be able to:
Calculate the length of a chord Apply chord properties and theorems Understand chord-radius relationships |
Q/A on chord definition and properties
Discussions on chord calculation methods Solving basic chord problems Demonstrations of geometric constructions Explaining chord theorems |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 126-128
|
|
3 | 2 |
Circles: Chords and Tangents
|
Equal chords
Intersecting chords |
By the end of the
lesson, the learner
should be able to:
Find the length of equal chords Apply equal chord theorems Solve equal chord problems |
Q/A on equal chord properties
Discussions on chord equality conditions Solving equal chord problems Demonstrations of proof techniques Explaining theoretical foundations |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 131-132
|
|
3 | 3 |
Circles: Chords and Tangents
|
Intersecting chords
|
By the end of the
lesson, the learner
should be able to:
Calculate the length of intersecting chords Solve complex intersection problems Apply advanced chord theorems |
Q/A on advanced intersection scenarios
Discussions on complex chord relationships Solving challenging intersection problems Demonstrations of advanced techniques Explaining sophisticated applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 135-139
|
|
3 | 4 |
Circles: Chords and Tangents
|
Chord properties
Tangent to a circle |
By the end of the
lesson, the learner
should be able to:
Solve comprehensive chord problems Integrate all chord concepts Apply chord knowledge systematically |
Q/A on comprehensive chord understanding
Discussions on integrated problem-solving Solving mixed chord problems Demonstrations of systematic approaches Explaining complete chord mastery |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 126-139
|
|
3 | 5 |
Circles: Chords and Tangents
|
Tangent to a circle
|
By the end of the
lesson, the learner
should be able to:
Calculate the length of tangent Calculate the angle between tangents Apply tangent measurement techniques |
Q/A on tangent calculations
Discussions on tangent measurement Solving tangent calculation problems Demonstrations of measurement methods Explaining tangent applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 141-142
|
|
3 | 6 |
Circles: Chords and Tangents
|
Properties of tangents to a circle from an external point
Tangent properties |
By the end of the
lesson, the learner
should be able to:
State the properties of tangents to a circle from an external point Apply external tangent properties Solve external tangent problems |
Q/A on external tangent concepts
Discussions on tangent properties Solving external tangent problems Demonstrations of property applications Explaining theoretical foundations |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 142-144
|
|
3 | 7 |
Circles: Chords and Tangents
|
Tangents to two circles
|
By the end of the
lesson, the learner
should be able to:
Calculate the tangents of direct common tangents Find direct common tangent properties Apply two-circle tangent concepts |
Q/A on two-circle tangent concepts
Discussions on direct tangent properties Solving direct tangent problems Demonstrations of construction methods Explaining geometric relationships |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 148-149
|
|
4 | 1 |
Circles: Chords and Tangents
|
Contact of circles
|
By the end of the
lesson, the learner
should be able to:
Calculate the radii of contact circles Understand internal contact properties Apply contact circle concepts |
Q/A on circle contact concepts
Discussions on internal contact properties Solving internal contact problems Demonstrations of contact relationships Explaining geometric principles |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 151-153
|
|
4 | 2 |
Circles: Chords and Tangents
|
Contact of circles
Circle contact |
By the end of the
lesson, the learner
should be able to:
Calculate the radii of contact circles Understand external contact properties Compare internal and external contact |
Q/A on external contact concepts
Discussions on contact type differences Solving external contact problems Demonstrations of contact analysis Explaining contact applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 153-154
|
|
4 | 3 |
Circles: Chords and Tangents
|
Angle in alternate segment
|
By the end of the
lesson, the learner
should be able to:
Calculate the angles in alternate segments Apply alternate segment theorem Understand segment angle properties |
Q/A on alternate segment concepts
Discussions on segment angle relationships Solving basic segment problems Demonstrations of theorem application Explaining geometric proofs |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 157-160
|
|
4 |
ADMINISTER CAT. ONE. |
|||||||
5 | 1 |
Circles: Chords and Tangents
|
Circumscribed circle
|
By the end of the
lesson, the learner
should be able to:
Construct circumscribed circles Find circumscribed circle properties Apply circumscription concepts |
Q/A on circumscription concepts
Discussions on circumscribed circle construction Solving circumscription problems Demonstrations of construction techniques Explaining circumscription applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 165
|
|
5 | 2 |
Circles: Chords and Tangents
|
Escribed circles
Centroid |
By the end of the
lesson, the learner
should be able to:
Construct escribed circles Find escribed circle properties Apply escription concepts |
Q/A on escription concepts
Discussions on escribed circle construction Solving escription problems Demonstrations of construction methods Explaining escription applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 165-166
|
|
5 | 3 |
Circles: Chords and Tangents
|
Orthocenter
|
By the end of the
lesson, the learner
should be able to:
Construct orthocenter Find orthocenter properties Apply orthocenter concepts |
Q/A on orthocenter concepts
Discussions on orthocenter construction Solving orthocenter problems Demonstrations of construction methods Explaining orthocenter applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 167
|
|
5 | 4 |
Circles: Chords and Tangents
Probability |
Circle and triangle relationships
Introduction |
By the end of the
lesson, the learner
should be able to:
Solve comprehensive circle-triangle problems Integrate all circle and triangle concepts Apply advanced geometric relationships |
Q/A on comprehensive geometric understanding
Discussions on integrated relationships Solving complex geometric problems Demonstrations of advanced applications Explaining sophisticated geometric principles |
Geometrical set, calculators
Chalk and blackboard, coins, dice made from cardboard, exercise books |
KLB Mathematics Book Three Pg 164-167
|
|
5 | 5 |
Probability
|
Experimental Probability
Experimental Probability applications |
By the end of the
lesson, the learner
should be able to:
Calculate the experimental probability Conduct probability experiments systematically Record and analyze experimental data Compare experimental results with expectations |
Q/A on frequency counting using repeated experiments
Discussions on trial repetition and result recording Solving experimental probability problems using data collection Demonstrations using coin toss and dice roll experiments Explaining frequency ratio calculations using practical examples |
Chalk and blackboard, coins, cardboard dice, tally charts, exercise books
Chalk and blackboard, extended experimental materials, data recording sheets, exercise books |
KLB Mathematics Book Three Pg 262-264
|
|
5 | 6 |
Probability
|
Range of Probability Measure
|
By the end of the
lesson, the learner
should be able to:
Calculate the range of probability measure Express probabilities on scale from 0 to 1 Convert between fractions, decimals, and percentages Interpret probability values correctly |
Q/A on probability scale using number line representations
Discussions on probability conversion between forms Solving probability scale problems using systematic methods Demonstrations using probability line and scale examples Explaining scale interpretation using practical scenarios |
Chalk and blackboard, number line drawings, probability scale charts, exercise books
|
KLB Mathematics Book Three Pg 265-266
|
|
5 | 7 |
Probability
|
Probability Space
Theoretical Probability |
By the end of the
lesson, the learner
should be able to:
Calculate the probability space for the theoretical probability Define sample space systematically List all possible outcomes Apply sample space concepts |
Q/A on outcome listing using systematic enumeration
Discussions on complete outcome identification Solving sample space problems using organized listing Demonstrations using dice, cards, and spinner examples Explaining probability calculation using outcome counting |
Chalk and blackboard, playing cards (locally made), spinners from cardboard, exercise books
Chalk and blackboard, fair dice and coins, probability calculation aids, exercise books |
KLB Mathematics Book Three Pg 266-267
|
|
6 | 1 |
Probability
|
Theoretical Probability advanced
Theoretical Probability applications |
By the end of the
lesson, the learner
should be able to:
Calculate the probability space for the theoretical probability Apply theoretical probability to complex problems Handle multiple outcome scenarios Solve advanced theoretical problems |
Q/A on advanced theoretical applications using complex scenarios
Discussions on multiple outcome analysis using systematic methods Solving challenging theoretical problems using organized approaches Demonstrations using complex probability setups Explaining advanced theoretical concepts using detailed reasoning |
Chalk and blackboard, complex probability materials, advanced calculation aids, exercise books
Chalk and blackboard, local game examples, practical scenario materials, exercise books |
KLB Mathematics Book Three Pg 268-270
|
|
6 | 2 |
Probability
|
Combined Events
|
By the end of the
lesson, the learner
should be able to:
Find the probability of a combined events Understand compound events and combinations Distinguish between different event types Apply basic combination rules |
Q/A on event combination using practical examples
Discussions on exclusive and inclusive event identification Solving basic combined event problems using visual methods Demonstrations using card drawing and dice rolling combinations Explaining combination principles using Venn diagrams |
Chalk and blackboard, playing cards, multiple dice, Venn diagram drawings, exercise books
|
KLB Mathematics Book Three Pg 272-273
|
|
6 | 3 |
Probability
|
Combined Events OR probability
Independent Events |
By the end of the
lesson, the learner
should be able to:
Find the probability of a combined events Apply addition rule for OR events Calculate "A or B" probabilities Handle mutually exclusive events |
Q/A on addition rule application using systematic methods
Discussions on mutually exclusive identification and calculation Solving OR probability problems using organized approaches Demonstrations using card selection and event combination Explaining addition rule logic using Venn diagrams |
Chalk and blackboard, Venn diagram materials, card examples, exercise books
Chalk and blackboard, multiple coins and dice, independence demonstration materials, exercise books |
KLB Mathematics Book Three Pg 272-274
|
|
6 | 4 |
Probability
|
Independent Events advanced
|
By the end of the
lesson, the learner
should be able to:
Find the probability of independent events Distinguish between independent and dependent events Apply conditional probability concepts Handle complex independence scenarios |
Q/A on independence verification using mathematical methods
Discussions on dependence concepts using card drawing examples Solving dependent and independent event problems using systematic approaches Demonstrations using replacement and non-replacement scenarios Explaining conditional probability using practical examples |
Chalk and blackboard, playing cards for replacement scenarios, multiple experimental setups, exercise books
|
KLB Mathematics Book Three Pg 276-278
|
|
6 | 5 |
Probability
|
Independent Events applications
Tree Diagrams |
By the end of the
lesson, the learner
should be able to:
Find the probability of independent events Apply independence to practical problems Solve complex multi-event scenarios Integrate independence with other concepts |
Q/A on complex event analysis using systematic problem-solving
Discussions on rule selection and application strategies Solving advanced combined problems using integrated approaches Demonstrations using complex experimental scenarios Explaining strategic problem-solving using logical analysis |
Chalk and blackboard, complex experimental materials, advanced calculation aids, exercise books
Chalk and blackboard, tree diagram templates, branching materials, exercise books |
KLB Mathematics Book Three Pg 278-280
|
|
6 | 6 |
Probability
Compound Proportion and Rates of Work |
Tree Diagrams advanced
Compound Proportions |
By the end of the
lesson, the learner
should be able to:
Use tree diagrams to find probability Apply trees to multi-stage problems Handle complex sequential events Calculate final probabilities using trees |
Q/A on complex tree application using multi-stage examples
Discussions on replacement scenario handling Solving complex tree problems using systematic calculation Demonstrations using detailed tree constructions Explaining systematic probability calculation using tree methods |
Chalk and blackboard, complex tree examples, detailed calculation aids, exercise books
Chalk and blackboard, local business examples, calculators if available, exercise books |
KLB Mathematics Book Three Pg 283-285
|
|
6 | 7 |
Compound Proportion and Rates of Work
|
Compound Proportions applications
|
By the end of the
lesson, the learner
should be able to:
Find the compound proportions Apply compound proportions to complex problems Handle multi-step compound proportion scenarios Solve real-world compound proportion problems |
Q/A on advanced compound proportion using complex scenarios
Discussions on multi-variable relationships using practical contexts Solving challenging compound problems using systematic approaches Demonstrations using construction and farming examples Explaining practical applications using community-based scenarios |
Chalk and blackboard, construction/farming examples, exercise books
|
KLB Mathematics Book Three Pg 290-291
|
|
7 | 1 |
Compound Proportion and Rates of Work
|
Proportional Parts
Proportional Parts applications |
By the end of the
lesson, the learner
should be able to:
Calculate the proportional parts Understand proportional division concepts Apply proportional parts to sharing problems Solve distribution problems using proportional methods |
Q/A on proportional sharing using practical examples
Discussions on fair distribution using ratio concepts Solving proportional parts problems using systematic division Demonstrations using sharing scenarios and inheritance examples Explaining proportional distribution using logical reasoning |
Chalk and blackboard, sharing demonstration materials, exercise books
Chalk and blackboard, business partnership examples, exercise books |
KLB Mathematics Book Three Pg 291-293
|
|
7 | 2 |
Compound Proportion and Rates of Work
|
Rates of Work
Rates of Work and Mixtures |
By the end of the
lesson, the learner
should be able to:
Calculate the rate of work Understand work rate relationships Apply time-work-efficiency concepts Solve basic rate of work problems |
Q/A on work rate calculation using practical examples
Discussions on efficiency and time relationships using work scenarios Solving basic rate of work problems using systematic methods Demonstrations using construction and labor examples Explaining work rate concepts using practical work situations |
Chalk and blackboard, work scenario examples, exercise books
Chalk and blackboard, mixture demonstration materials, exercise books |
KLB Mathematics Book Three Pg 294-295
|
|
7 | 3 |
Graphical Methods
|
Tables of given relations
|
By the end of the
lesson, the learner
should be able to:
Draw tables of given relations Construct organized data tables systematically Prepare data for graphical representation Understand relationship between variables |
Q/A on table construction using systematic data organization
Discussions on variable relationships using practical examples Solving table preparation problems using organized methods Demonstrations using data collection and tabulation Explaining systematic data arrangement using logical procedures |
Chalk and blackboard, ruled paper for tables, exercise books
|
KLB Mathematics Book Three Pg 299
|
|
7 | 4 |
Graphical Methods
|
Graphs of given relations
Tables and graphs integration |
By the end of the
lesson, the learner
should be able to:
Draw graphs of given relations Plot points accurately on coordinate systems Connect points to show relationships Interpret graphs from given data |
Q/A on graph plotting using coordinate methods
Discussions on point plotting and curve drawing Solving graph construction problems using systematic plotting Demonstrations using coordinate systems and curve sketching Explaining graph interpretation using visual analysis |
Chalk and blackboard, graph paper or grids, rulers, exercise books
Chalk and blackboard, graph paper, data examples, exercise books |
KLB Mathematics Book Three Pg 300
|
|
7 | 5 |
Graphical Methods
|
Introduction to cubic equations
Graphical solution of cubic equations |
By the end of the
lesson, the learner
should be able to:
Draw tables of cubic functions Understand cubic equation characteristics Prepare cubic function data systematically Recognize cubic curve patterns |
Q/A on cubic function evaluation using systematic calculation
Discussions on cubic equation properties using mathematical analysis Solving cubic table preparation using organized methods Demonstrations using cubic function examples Explaining cubic characteristics using pattern recognition |
Chalk and blackboard, cubic function examples, exercise books
Chalk and blackboard, graph paper, cubic equation examples, exercise books |
KLB Mathematics Book Three Pg 301
|
|
7 | 6 |
Graphical Methods
|
Advanced cubic solutions
|
By the end of the
lesson, the learner
should be able to:
Draw graphs of cubic equations Apply graphical methods to complex cubic problems Handle multiple root scenarios Verify solutions using graphical analysis |
Q/A on advanced cubic graphing using complex examples
Discussions on multiple root identification using graph analysis Solving challenging cubic problems using systematic methods Demonstrations using detailed cubic constructions Explaining verification methods using graphical checking |
Chalk and blackboard, advanced graph examples, exercise books
|
KLB Mathematics Book Three Pg 302-304
|
|
7 | 7 |
Graphical Methods
|
Introduction to rates of change
Average rates of change |
By the end of the
lesson, the learner
should be able to:
Calculate the average rates of change Understand rate of change concepts Apply rate calculations to practical problems Interpret rate meanings in context |
Q/A on rate calculation using slope methods
Discussions on rate interpretation using practical examples Solving basic rate problems using systematic calculation Demonstrations using speed-time and distance examples Explaining rate concepts using practical analogies |
Chalk and blackboard, rate calculation examples, exercise books
Chalk and blackboard, graph paper, rate examples, exercise books |
KLB Mathematics Book Three Pg 304-306
|
|
8 | 1 |
Graphical Methods
|
Advanced average rates
|
By the end of the
lesson, the learner
should be able to:
Calculate the average rates of change Handle complex rate scenarios Apply rates to business and scientific problems Integrate rate concepts with other topics |
Q/A on complex rate applications using advanced scenarios
Discussions on business and scientific rate applications Solving challenging rate problems using integrated methods Demonstrations using comprehensive rate examples Explaining advanced applications using detailed analysis |
Chalk and blackboard, advanced rate scenarios, exercise books
|
KLB Mathematics Book Three Pg 304-310
|
|
8 | 2 |
Graphical Methods
|
Introduction to instantaneous rates
Rate of change at an instant |
By the end of the
lesson, the learner
should be able to:
Calculate the rate of change at an instant Understand instantaneous rate concepts Distinguish between average and instantaneous rates Apply instant rate methods |
Q/A on instantaneous rate concepts using limiting methods
Discussions on instant vs average rate differences Solving basic instantaneous rate problems Demonstrations using tangent line concepts Explaining instantaneous rate using practical examples |
Chalk and blackboard, tangent line examples, exercise books
Chalk and blackboard, detailed graph examples, exercise books |
KLB Mathematics Book Three Pg 310-311
|
|
8 | 3 |
Graphical Methods
|
Advanced instantaneous rates
Empirical graphs |
By the end of the
lesson, the learner
should be able to:
Calculate the rate of change at an instant Handle complex instantaneous rate scenarios Apply instant rates to advanced problems Integrate instantaneous concepts with applications |
Q/A on advanced instantaneous applications using complex examples
Discussions on sophisticated rate problems using detailed analysis Solving challenging instantaneous problems using systematic methods Demonstrations using comprehensive rate constructions Explaining advanced applications using detailed reasoning |
Chalk and blackboard, advanced rate examples, exercise books
Chalk and blackboard, experimental data examples, exercise books |
KLB Mathematics Book Three Pg 310-315
|
|
8 | 4 |
Graphical Methods
|
Advanced empirical methods
|
By the end of the
lesson, the learner
should be able to:
Draw the empirical graphs Apply empirical methods to complex data Handle large datasets and trends Interpret empirical results meaningfully |
Q/A on advanced empirical techniques using complex datasets
Discussions on trend analysis using systematic methods Solving challenging empirical problems using organized approaches Demonstrations using comprehensive data analysis Explaining advanced interpretations using detailed reasoning |
Chalk and blackboard, complex data examples, exercise books
|
KLB Mathematics Book Three Pg 315-321
|
Your Name Comes Here