If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 | 1 |
Approximations and Errors
|
Computing using calculators
|
By the end of the
lesson, the learner
should be able to:
Solve basic operations using calculators Use calculator functions effectively Apply calculator to mathematical computations |
Q/A on calculator familiarity
Discussions on calculator operations Solving basic arithmetic problems Demonstrations of calculator functions Explaining proper calculator usage |
Calculators, operation guides
Calculators, verification worksheets |
KLB Mathematics Book Three Pg 24-26
|
|
1 | 2 |
Approximations and Errors
|
Approximation
|
By the end of the
lesson, the learner
should be able to:
Approximate values by rounding off Round numbers to specified decimal places Apply rounding rules correctly |
Q/A on rounding concepts
Discussions on rounding techniques Solving rounding problems Demonstrations of rounding methods Explaining rounding rules and applications |
Calculators, rounding charts
|
KLB Mathematics Book Three Pg 29-30
|
|
1 | 3 |
Approximations and Errors
|
Estimation
|
By the end of the
lesson, the learner
should be able to:
Approximate values by truncation Estimate values using appropriate methods Compare estimation techniques |
Q/A on estimation strategies
Discussions on truncation vs rounding Solving estimation problems Demonstrations of truncation methods Explaining when to use different techniques |
Calculators, estimation guides
|
KLB Mathematics Book Three Pg 30
|
|
1 | 4 |
Approximations and Errors
|
Accuracy and errors
Percentage error |
By the end of the
lesson, the learner
should be able to:
Find the absolute error Calculate relative error Distinguish between different error types |
Q/A on error concepts
Discussions on error calculations Solving absolute and relative error problems Demonstrations of error computation Explaining error significance |
Calculators, error calculation sheets
Calculators, percentage error worksheets |
KLB Mathematics Book Three Pg 31-32
|
|
1 | 5 |
Approximations and Errors
|
Rounding off error and truncation error
|
By the end of the
lesson, the learner
should be able to:
Find the rounding off error Calculate truncation error Compare rounding and truncation errors |
Q/A on error types
Discussions on error sources Solving rounding and truncation error problems Demonstrations of error comparison Explaining error analysis |
Calculators, error comparison charts
|
KLB Mathematics Book Three Pg 34
|
|
1 | 6 |
Approximations and Errors
|
Propagation of errors
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in addition and subtraction Calculate combined errors Apply error propagation rules |
Q/A on error propagation concepts
Discussions on addition/subtraction errors Solving error propagation problems Demonstrations of error combination Explaining propagation principles |
Calculators, error propagation guides
Calculators, verification worksheets |
KLB Mathematics Book Three Pg 35-36
|
|
1 | 7 |
Approximations and Errors
|
Propagation of errors in multiplication
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in multiplication Calculate relative errors in products Apply multiplication error rules |
Q/A on multiplication error concepts
Discussions on product error calculation Solving multiplication error problems Demonstrations of relative error computation Explaining multiplication error principles |
Calculators, multiplication error guides
|
KLB Mathematics Book Three Pg 36-37
|
|
2 | 1 |
Approximations and Errors
|
Propagation of errors in multiplication
Propagation of errors in division |
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in multiplication Solve complex multiplication error problems Compare different error propagation methods |
Q/A on advanced multiplication errors
Discussions on complex error scenarios Solving challenging multiplication problems Demonstrations of method comparison Explaining optimal error calculation |
Calculators, method comparison charts
Calculators, division error worksheets |
KLB Mathematics Book Three Pg 36-37
|
|
2 | 2 |
Approximations and Errors
|
Propagation of errors in division
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in division Solve complex division error problems Verify division error calculations |
Q/A on division error mastery
Discussions on complex division scenarios Solving advanced division error problems Demonstrations of error verification Explaining accuracy in division errors |
Calculators, verification guides
|
KLB Mathematics Book Three Pg 37-38
|
|
2 | 3 |
Approximations and Errors
|
Word problems
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors of a word problem Apply error analysis to real-world situations Solve comprehensive error problems |
Q/A on chapter consolidation
Discussions on real-world applications Solving comprehensive word problems Demonstrations of problem-solving strategies Explaining practical error analysis |
Calculators, word problem sets, comprehensive review sheets
|
KLB Mathematics Book Three Pg 39-40
|
|
2 | 4 |
Sequences and Series
|
Introduction to sequences and finding terms
General term of sequences and applications |
By the end of the
lesson, the learner
should be able to:
Define sequences and identify sequence patterns Find next terms using established patterns Recognize different types of sequence patterns Apply pattern recognition systematically |
Q/A on number patterns from daily life
Discussions on counting patterns using classroom arrangements Solving pattern completion problems step-by-step Demonstrations using bead or stone arrangements Explaining sequence terminology and pattern continuation |
Chalk and blackboard, stones or beans for patterns, exercise books
Chalk and blackboard, numbered cards made from paper, exercise books |
KLB Mathematics Book Three Pg 207-208
|
|
2 | 5 |
Sequences and Series
|
Arithmetic sequences and nth term
|
By the end of the
lesson, the learner
should be able to:
Define arithmetic sequences and common differences Calculate common differences correctly Derive and apply the nth term formula Solve problems using arithmetic sequence concepts |
Q/A on arithmetic patterns using step-by-step examples
Discussions on constant difference patterns and formula derivation Solving arithmetic sequence problems systematically Demonstrations using equal-step progressions Explaining formula structure using algebraic reasoning |
Chalk and blackboard, measuring tape or string, exercise books
|
KLB Mathematics Book Three Pg 209-210
|
|
2 | 6 |
Sequences and Series
|
Arithmetic sequence applications
Geometric sequences and nth term |
By the end of the
lesson, the learner
should be able to:
Solve complex arithmetic sequence problems Apply arithmetic sequences to real-world problems Handle word problems involving arithmetic sequences Model practical situations using arithmetic progressions |
Q/A on practical applications using local business examples
Discussions on salary progression and savings plans Solving real-world problems using sequence methods Demonstrations using employment and finance scenarios Explaining practical interpretation using meaningful contexts |
Chalk and blackboard, local employment/savings examples, exercise books
Chalk and blackboard, objects for doubling demonstrations, exercise books |
KLB Mathematics Book Three Pg 209-210
|
|
2 | 7 |
Sequences and Series
|
Geometric sequence applications
|
By the end of the
lesson, the learner
should be able to:
Solve complex geometric sequence problems Apply geometric sequences to real-world problems Handle population growth and depreciation problems Model exponential patterns using sequences |
Q/A on practical applications using population/growth examples
Discussions on exponential growth in nature and economics Solving real-world problems using geometric methods Demonstrations using population and business scenarios Explaining practical interpretation using meaningful contexts |
Chalk and blackboard, population/growth data examples, exercise books
|
KLB Mathematics Book Three Pg 211-213
|
|
3 | 1 |
Sequences and Series
|
Arithmetic series and sum formula
Geometric series and applications |
By the end of the
lesson, the learner
should be able to:
Define arithmetic series as sums of sequences Derive the sum formula for arithmetic series Apply the arithmetic series formula systematically Calculate sums efficiently using the formula |
Q/A on series concepts using summation examples
Discussions on sequence-to-series relationships and formula derivation Solving arithmetic series problems using step-by-step approach Demonstrations using cumulative sum examples Explaining derivation logic using algebraic reasoning |
Chalk and blackboard, counting materials for summation, exercise books
Chalk and blackboard, convergence demonstration materials, exercise books |
KLB Mathematics Book Three Pg 214-215
|
|
3 | 2 |
Sequences and Series
|
Mixed problems and advanced applications
|
By the end of the
lesson, the learner
should be able to:
Combine arithmetic and geometric concepts Solve complex mixed sequence and series problems Apply appropriate methods for different types Model real-world situations using mathematical sequences |
Q/A on problem type identification using systematic analysis
Discussions on method selection and comprehensive applications Solving mixed problems using appropriate techniques Demonstrations using interdisciplinary scenarios Explaining method choice using logical reasoning |
Chalk and blackboard, mixed problem collections, exercise books
|
KLB Mathematics Book Three Pg 207-219
|
|
3 | 3 |
Sequences and Series
|
Sequences in nature and technology
|
By the end of the
lesson, the learner
should be able to:
Identify mathematical patterns in natural phenomena Analyze sequences in biological and technological contexts Apply sequence concepts to environmental problems Appreciate mathematics in the natural and modern world |
Q/A on natural and technological patterns using examples
Discussions on biological sequences and digital applications Solving nature and technology-based problems Demonstrations using natural pattern examples Explaining mathematical beauty using real phenomena |
Chalk and blackboard, natural and technology examples, exercise books
|
KLB Mathematics Book Three Pg 207-219
|
|
3 | 4 |
Compound Proportion and Rates of Work
|
Compound Proportions
Compound Proportions applications |
By the end of the
lesson, the learner
should be able to:
Find the compound proportions Understand compound proportion relationships Apply compound proportion methods systematically Solve problems involving multiple variables |
Q/A on compound relationships using practical examples
Discussions on multiple variable situations using local scenarios Solving compound proportion problems using systematic methods Demonstrations using business and trade examples Explaining compound proportion logic using step-by-step reasoning |
Chalk and blackboard, local business examples, calculators if available, exercise books
Chalk and blackboard, construction/farming examples, exercise books |
KLB Mathematics Book Three Pg 288-290
|
|
3 | 5 |
Compound Proportion and Rates of Work
|
Proportional Parts
|
By the end of the
lesson, the learner
should be able to:
Calculate the proportional parts Understand proportional division concepts Apply proportional parts to sharing problems Solve distribution problems using proportional methods |
Q/A on proportional sharing using practical examples
Discussions on fair distribution using ratio concepts Solving proportional parts problems using systematic division Demonstrations using sharing scenarios and inheritance examples Explaining proportional distribution using logical reasoning |
Chalk and blackboard, sharing demonstration materials, exercise books
|
KLB Mathematics Book Three Pg 291-293
|
|
3 | 6 |
Compound Proportion and Rates of Work
|
Proportional Parts applications
Rates of Work |
By the end of the
lesson, the learner
should be able to:
Calculate the proportional parts Apply proportional parts to complex sharing scenarios Handle business partnership profit sharing Solve advanced proportional distribution problems |
Q/A on complex proportional sharing using business examples
Discussions on partnership profit distribution using practical scenarios Solving advanced proportional problems using systematic methods Demonstrations using business partnership and investment examples Explaining practical applications using meaningful contexts |
Chalk and blackboard, business partnership examples, exercise books
Chalk and blackboard, work scenario examples, exercise books |
KLB Mathematics Book Three Pg 291-293
|
|
3 | 7 |
Compound Proportion and Rates of Work
|
Rates of Work and Mixtures
|
By the end of the
lesson, the learner
should be able to:
Calculate the rate of work Apply work rates to complex scenarios Handle mixture problems and combinations Solve advanced rate and mixture problems |
Q/A on advanced work rates using complex scenarios
Discussions on mixture problems using practical examples Solving challenging rate and mixture problems using systematic approaches Demonstrations using cooking, construction, and manufacturing examples Explaining mixture concepts using practical applications |
Chalk and blackboard, mixture demonstration materials, exercise books
|
KLB Mathematics Book Three Pg 295-296
|
|
4 | 1 |
Statistics II
|
Introduction to Advanced Statistics
Working Mean Concept |
By the end of the
lesson, the learner
should be able to:
-Review measures of central tendency from Form 2 -Identify limitations of simple mean calculations -Understand need for advanced statistical methods -Recognize patterns in large datasets |
-Review mean, median, mode from previous work -Discuss challenges with large numbers -Examine real data from Kenya (population, rainfall) -Q&A on statistical applications in daily life |
Exercise books
-Manila paper -Real data examples -Chalk/markers -Sample datasets |
KLB Secondary Mathematics Form 4, Pages 39-42
|
|
4 | 2 |
Statistics II
|
Mean Using Working Mean - Simple Data
|
By the end of the
lesson, the learner
should be able to:
-Calculate mean using working mean for ungrouped data -Apply the formula: mean = working mean + mean of deviations -Verify results using direct calculation method -Solve problems with whole numbers |
-Work through step-by-step examples on chalkboard -Practice with student marks and heights data -Verify answers using traditional method -Individual practice with guided support |
Exercise books
-Manila paper -Student data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 42-48
|
|
4 | 3 |
Statistics II
|
Mean Using Working Mean - Frequency Tables
|
By the end of the
lesson, the learner
should be able to:
-Calculate mean using working mean for frequency data -Apply working mean to discrete frequency distributions -Use the formula with frequencies correctly -Solve real-world problems with frequency data |
-Demonstrate with family size data from local community -Practice calculating fx and fd systematically -Work through examples step-by-step -Students practice with their own collected data |
Exercise books
-Manila paper -Community data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 42-48
|
|
4 | 4 |
Statistics II
|
Mean for Grouped Data Using Working Mean
Advanced Working Mean Techniques |
By the end of the
lesson, the learner
should be able to:
-Calculate mean for grouped continuous data -Select appropriate working mean for grouped data -Use midpoints of class intervals correctly -Apply working mean formula to grouped data |
-Use height/weight data of students in class -Practice finding midpoints of class intervals -Work through complex calculations step by step -Students practice with agricultural production data |
Exercise books
-Manila paper -Real datasets -Chalk/markers -Economic data |
KLB Secondary Mathematics Form 4, Pages 42-48
|
|
4 | 5 |
Statistics II
|
Introduction to Quartiles, Deciles, Percentiles
|
By the end of the
lesson, the learner
should be able to:
-Define quartiles, deciles, and percentiles -Understand how they divide data into parts -Explain the relationship between these measures -Identify their importance in data analysis |
-Use physical demonstration with student heights -Arrange 20 students by height to show quartiles -Explain percentile ranks in exam results -Discuss applications in grading systems |
Exercise books
-Manila paper -Student height data -Measuring tape |
KLB Secondary Mathematics Form 4, Pages 49-52
|
|
4 | 6 |
Statistics II
|
Calculating Quartiles for Ungrouped Data
Quartiles for Grouped Data |
By the end of the
lesson, the learner
should be able to:
-Find lower quartile, median, upper quartile for raw data -Apply the position formulas correctly -Arrange data in ascending order systematically -Interpret quartile values in context |
-Practice with test scores from the class -Arrange data systematically on chalkboard -Calculate Q1, Q2, Q3 step by step -Students work with their own datasets |
Exercise books
-Manila paper -Test score data -Chalk/markers -Grade data |
KLB Secondary Mathematics Form 4, Pages 49-52
|
|
4 | 7 |
Statistics II
|
Deciles and Percentiles Calculations
|
By the end of the
lesson, the learner
should be able to:
-Calculate specific deciles and percentiles -Apply interpolation formulas for deciles/percentiles -Interpret decile and percentile positions -Use these measures for comparative analysis |
-Calculate specific percentiles for class test scores -Find deciles for sports performance data -Compare students' positions using percentiles -Practice with national examination statistics |
Exercise books
-Manila paper -Performance data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 49-52
|
|
5 | 1 |
Statistics II
|
Introduction to Cumulative Frequency
Drawing Cumulative Frequency Curves (Ogives) |
By the end of the
lesson, the learner
should be able to:
-Construct cumulative frequency tables -Understand "less than" cumulative frequencies -Plot cumulative frequency against class boundaries -Identify the characteristic S-shape of ogives |
-Create cumulative frequency table with class data -Plot points on manila paper grid -Join points to form smooth curve -Discuss properties of ogive curves |
Exercise books
-Manila paper -Ruler -Class data -Pencils |
KLB Secondary Mathematics Form 4, Pages 52-60
|
|
5 | 2 |
Statistics II
|
Reading Values from Ogives
|
By the end of the
lesson, the learner
should be able to:
-Read median from cumulative frequency curve -Find quartiles using ogive -Estimate any percentile from the curve -Interpret readings in real-world context |
-Demonstrate reading techniques on large ogive -Practice finding median position (n/2) -Read quartile positions systematically -Students practice reading their own curves |
Exercise books
-Manila paper -Completed ogives -Ruler |
KLB Secondary Mathematics Form 4, Pages 52-60
|
|
5 | 3 |
Statistics II
|
Applications of Ogives
|
By the end of the
lesson, the learner
should be able to:
-Use ogives to solve real-world problems -Find number of values above/below certain points -Calculate percentage of data in given ranges -Compare different datasets using ogives |
-Solve problems about pass rates in examinations -Find how many students scored above average -Calculate percentages for different grade ranges -Use agricultural production data for analysis |
Exercise books
-Manila paper -Real problem datasets -Ruler |
KLB Secondary Mathematics Form 4, Pages 52-60
|
|
5 | 4 |
Statistics II
|
Introduction to Measures of Dispersion
Range and Interquartile Range |
By the end of the
lesson, the learner
should be able to:
-Define dispersion and its importance -Understand limitations of central tendency alone -Compare datasets with same mean but different spread -Identify different measures of dispersion |
-Compare test scores of two classes with same mean -Show how different spreads affect interpretation -Discuss variability in real-world data -Introduce range as simplest measure |
Exercise books
-Manila paper -Comparative datasets -Chalk/markers -Student data -Measuring tape |
KLB Secondary Mathematics Form 4, Pages 60-65
|
|
5 | 5 |
Statistics II
|
Mean Absolute Deviation
|
By the end of the
lesson, the learner
should be able to:
-Calculate mean absolute deviation -Use absolute values correctly in calculations -Understand concept of average distance from mean -Apply MAD to compare variability in datasets |
-Calculate MAD for class test scores -Practice with absolute value calculations -Compare MAD values for different subjects -Interpret MAD in context of data spread |
Exercise books
-Manila paper -Test score data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
5 | 6 |
Statistics II
|
Introduction to Variance
Variance Using Alternative Formula |
By the end of the
lesson, the learner
should be able to:
-Define variance as mean of squared deviations -Calculate variance using definition formula -Understand why deviations are squared -Compare variance with other dispersion measures |
-Work through variance calculation step by step -Explain squaring deviations eliminates negatives -Calculate variance for simple datasets -Compare with mean absolute deviation |
Exercise books
-Manila paper -Simple datasets -Chalk/markers -Frequency data |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
5 | 7 |
Statistics II
|
Standard Deviation Calculations
|
By the end of the
lesson, the learner
should be able to:
-Calculate standard deviation as square root of variance -Apply standard deviation to ungrouped data -Use standard deviation to compare datasets -Interpret standard deviation in practical contexts |
-Calculate SD for student exam scores -Compare SD values for different subjects -Interpret what high/low SD means -Use SD to identify consistent performance |
Exercise books
-Manila paper -Exam score data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
6 | 1 |
Statistics II
|
Standard Deviation for Grouped Data
Advanced Standard Deviation Techniques |
By the end of the
lesson, the learner
should be able to:
-Calculate standard deviation for frequency distributions -Use working mean with grouped data for SD -Apply coding techniques to simplify calculations -Solve complex grouped data problems |
-Work with agricultural yield data from local farms -Use coding method to simplify calculations -Calculate SD step by step for grouped data -Compare variability in different crops |
Exercise books
-Manila paper -Agricultural data -Chalk/markers -Transformation examples |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
6 | 2 |
Longitudes and Latitudes
|
Introduction to Earth as a Sphere
|
By the end of the
lesson, the learner
should be able to:
-Understand Earth as a sphere for mathematical purposes -Identify poles, equator, and axis of rotation -Recognize Earth's dimensions and basic structure -Connect Earth's rotation to day-night cycle |
-Use globe or spherical ball to demonstrate Earth -Identify North Pole, South Pole, and equator -Discuss Earth's rotation and its effects -Show axis of rotation through poles |
Exercise books
-Globe/spherical ball -Manila paper -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 136-139
|
|
6 | 3 |
Longitudes and Latitudes
|
Great and Small Circles
|
By the end of the
lesson, the learner
should be able to:
-Define great circles and small circles on a sphere -Identify properties of great and small circles -Understand that great circles divide sphere into hemispheres -Recognize examples of great and small circles on Earth |
-Demonstrate great circles using globe and string -Show that great circles pass through center -Compare radii of great and small circles -Identify equator as the largest circle |
Exercise books
-Globe -String -Manila paper |
KLB Secondary Mathematics Form 4, Pages 136-139
|
|
6 | 4 |
Longitudes and Latitudes
|
Understanding Latitude
Properties of Latitude Lines |
By the end of the
lesson, the learner
should be able to:
-Define latitude and its measurement -Identify equator as 0° latitude reference -Understand North and South latitude designations -Recognize that latitude ranges from 0° to 90° |
-Mark latitude lines on globe using tape -Show equator as reference line (0°) -Demonstrate measurement from equator to poles -Practice identifying latitude positions |
Exercise books
-Globe -Tape/string -Protractor -Calculator -Manila paper |
KLB Secondary Mathematics Form 4, Pages 136-139
|
|
6 | 5 |
Longitudes and Latitudes
|
Understanding Longitude
|
By the end of the
lesson, the learner
should be able to:
-Define longitude and its measurement -Identify Greenwich Meridian as 0° longitude reference -Understand East and West longitude designations -Recognize that longitude ranges from 0° to 180° |
-Mark longitude lines on globe using string -Show Greenwich Meridian as reference line -Demonstrate measurement East and West from Greenwich -Practice identifying longitude positions |
Exercise books
-Globe -String -World map |
KLB Secondary Mathematics Form 4, Pages 136-139
|
|
6 | 6 |
Longitudes and Latitudes
|
Properties of Longitude Lines
Position of Places on Earth |
By the end of the
lesson, the learner
should be able to:
-Understand that longitude lines are great circles -Recognize that all longitude lines pass through poles -Understand that longitude lines converge at poles -Identify that opposite longitudes differ by 180° |
-Show longitude lines converging at poles -Demonstrate that longitude lines are great circles -Find opposite longitude positions -Compare longitude and latitude line properties |
Exercise books
-Globe -String -Manila paper -World map -Kenya map |
KLB Secondary Mathematics Form 4, Pages 136-139
|
|
6 | 7 |
Longitudes and Latitudes
|
Latitude and Longitude Differences
|
By the end of the
lesson, the learner
should be able to:
-Calculate latitude differences between two points -Calculate longitude differences between two points -Understand angular differences on same and opposite sides -Apply difference calculations to navigation problems |
-Calculate difference between Nairobi and Cairo -Practice with points on same and opposite sides -Work through systematic calculation methods -Apply to real navigation scenarios |
Exercise books
-Manila paper -Calculator -Navigation examples |
KLB Secondary Mathematics Form 4, Pages 139-143
|
|
7 | 1 |
Longitudes and Latitudes
|
Introduction to Distance Calculations
Distance Along Great Circles |
By the end of the
lesson, the learner
should be able to:
-Understand relationship between angles and distances -Learn that 1° on great circle = 60 nautical miles -Define nautical mile and its relationship to kilometers -Apply basic distance formulas for great circles |
-Demonstrate angle-distance relationship using globe -Show that 1' (minute) = 1 nautical mile -Convert between nautical miles and kilometers -Practice basic distance calculations |
Exercise books
-Globe -Calculator -Conversion charts -Manila paper -Real examples |
KLB Secondary Mathematics Form 4, Pages 143-156
|
|
7 | 2 |
Longitudes and Latitudes
|
Distance Along Small Circles (Parallels)
|
By the end of the
lesson, the learner
should be able to:
-Understand that parallel distances use different formula -Apply formula: distance = longitude difference × 60 × cos(latitude) -Calculate radius of latitude circles -Solve problems involving parallel of latitude distances |
-Derive formula using trigonometry -Calculate distance between Mombasa and Lagos -Show why latitude affects distance calculations -Practice with various latitude examples |
Exercise books
-Manila paper -Calculator -African city examples |
KLB Secondary Mathematics Form 4, Pages 143-156
|
|
7 | 3 |
Longitudes and Latitudes
|
Shortest Distance Problems
|
By the end of the
lesson, the learner
should be able to:
-Understand that shortest distance is along great circle -Compare great circle and parallel distances -Calculate shortest distances between any two points -Apply to navigation and flight path problems |
-Compare distances: parallel vs great circle routes -Calculate shortest distance between London and New York -Apply to aircraft flight planning -Discuss practical navigation implications |
Exercise books
-Manila paper -Calculator -Flight path examples |
KLB Secondary Mathematics Form 4, Pages 143-156
|
|
7 | 4 |
Longitudes and Latitudes
|
Advanced Distance Calculations
Introduction to Time and Longitude |
By the end of the
lesson, the learner
should be able to:
-Solve complex distance problems with multiple steps -Calculate distances involving multiple coordinate differences -Apply to surveying and mapping problems -Use systematic approaches for difficult calculations |
-Work through complex multi-step distance problems -Apply to surveying land boundaries -Calculate perimeters of geographical regions -Practice with examination-style problems |
Exercise books
-Manila paper -Calculator -Surveying examples -Globe -Light source -Time zone examples |
KLB Secondary Mathematics Form 4, Pages 143-156
|
|
7 | 5 |
Longitudes and Latitudes
|
Local Time Calculations
|
By the end of the
lesson, the learner
should be able to:
-Calculate local time differences between places -Understand that places east are ahead in time -Apply rule: 4 minutes per degree of longitude -Solve time problems involving East-West positions |
-Calculate time difference between Nairobi and London -Practice with cities at various longitudes -Apply East-ahead, West-behind rule consistently -Work through systematic time calculation method |
Exercise books
-Manila paper -World time examples -Calculator |
KLB Secondary Mathematics Form 4, Pages 156-161
|
|
7 | 6 |
Longitudes and Latitudes
|
Greenwich Mean Time (GMT)
Complex Time Problems |
By the end of the
lesson, the learner
should be able to:
-Understand Greenwich as reference for world time -Calculate local times relative to GMT -Apply GMT to solve international time problems -Understand time zones and their practical applications |
-Use Greenwich as time reference point -Calculate local times for cities worldwide -Apply to international business scenarios -Discuss practical applications of GMT |
Exercise books
-Manila paper -World map -Time zone charts -International examples -Travel scenarios |
KLB Secondary Mathematics Form 4, Pages 156-161
|
|
7 | 7 |
Longitudes and Latitudes
|
Speed Calculations
|
By the end of the
lesson, the learner
should be able to:
-Define knot as nautical mile per hour -Calculate speeds in knots and km/h -Apply speed calculations to navigation problems -Solve problems involving time, distance, and speed |
-Calculate ship speeds in knots -Convert between knots and km/h -Apply to aircraft and ship navigation -Practice with maritime and aviation examples |
Exercise books
-Manila paper -Calculator -Navigation examples |
KLB Secondary Mathematics Form 4, Pages 156-161
|
Your Name Comes Here