If this scheme pleases you, click here to download.
WK | LSN | STRAND | SUB-STRAND | LESSON LEARNING OUTCOMES | LEARNING EXPERIENCES | KEY INQUIRY QUESTIONS | LEARNING RESOURCES | ASSESSMENT METHODS | REFLECTION |
---|---|---|---|---|---|---|---|---|---|
2 | 1 |
1.0 Numbers
|
1.5 Decimals: Place Value
1.5 Decimals: Decimal Places |
By the end of the
lesson, the learner
should be able to:
identify decimal place values up to ten thousandths, read decimals with understanding of place value, and appreciate the extension of place value to decimals |
Learners explore decimal place value through concrete and visual representations. Using place value apparatus, they investigate how the base-10 system extends to the right of the decimal point, identifying the values of positions up to ten thousandths. They practice identifying the place value of digits in various decimal numbers and create their own decimal examples with specific place value requirements. Through collaborative discussion, they develop precise mathematical language for describing decimal place values.
|
How do we identify place values in decimals?
|
MENTOR Mathematics Grade 6 Learner's Book, page 44
Place value apparatus MENTOR Mathematics Grade 6 Learner's Book, page 45 Decimal place value chart |
Oral questions
Written exercise
Observation
|
|
2 | 2 |
1.0 Numbers
|
1.5 Decimals: Rounding Off
1.5 Decimals: Decimals to Fractions |
By the end of the
lesson, the learner
should be able to:
round decimals to specified decimal places, apply appropriate rounding rules, and value estimation in decimal contexts |
Learners develop decimal rounding skills through progressive practice. They explore rounding rules for decimals, focusing on how to determine whether to round up or down based on the digit that follows the rounding position. Through guided examples and collaborative problem-solving, they practice rounding decimals to 1, 2, and 3 decimal places, discussing potential applications of decimal rounding in real-world contexts like measurement and finance. They create their own rounding challenges for peers, reinforcing procedural fluency through teaching others.
|
When do we need to round off decimals?
|
MENTOR Mathematics Grade 6 Learner's Book, page 46
Number cards with decimals MENTOR Mathematics Grade 6 Learner's Book, page 47 Square/rectangular grid |
Oral questions
Written exercise
Group work
|
|
2 | 3 |
1.0 Numbers
|
1.5 Decimals: Fractions to Decimals
1.5 Decimals: Decimals to Percentages |
By the end of the
lesson, the learner
should be able to:
transform fractions into decimal form, apply division to convert fractions to decimals, and show interest in the relationship between fractions and decimals |
Learners develop numerical conversion skills through systematic practice. Using square/rectangular grids as visual support, they explore the relationship between fractions and their decimal equivalents. They practice converting fractions to decimals through division (numerator ÷ denominator), identifying patterns in the results (terminating vs. repeating decimals). Through collaborative investigation, they discover fraction-decimal equivalents for common fractions and create reference charts to support future work with rational numbers.
|
How do we convert fractions to decimals?
|
MENTOR Mathematics Grade 6 Learner's Book, page 48
Square/rectangular grid MENTOR Mathematics Grade 6 Learner's Book, page 49 Decimal and percentage charts |
Oral questions
Written exercise
Observation
|
|
2 | 4 |
1.0 Numbers
|
1.5 Decimals: Percentages to Decimals
1.5 Decimals: Addition |
By the end of the
lesson, the learner
should be able to:
change percentages to decimal form, divide percentages by 100 to find decimals, and appreciate mathematical conversions |
Learners develop mathematical flexibility through conversion practice. They investigate the relationship between percentages and decimals, discovering that dividing a percentage by 100 converts it to an equivalent decimal. Through guided examples and collaborative problem-solving, they develop procedural fluency with the conversion process and explore connections between different numerical representations. They create reference charts showing equivalent forms (fractions, decimals, percentages) for common values to support mathematical communication across different representations.
|
How do we convert percentages to decimals?
|
MENTOR Mathematics Grade 6 Learner's Book, page 50
Percentage and decimal charts MENTOR Mathematics Grade 6 Learner's Book, page 51 Place value apparatus |
Oral questions
Written exercise
Group work
|
|
2 | 5 |
1.0 Numbers
|
1.5 Decimals: Subtraction
|
By the end of the
lesson, the learner
should be able to:
subtract decimals up to 4 decimal places, implement proper alignment of decimal points, and show precision in decimal operations |
Learners develop computational accuracy with decimal operations through progressive practice. Using place value apparatus to reinforce conceptual understanding, they explore the process of decimal subtraction, focusing on proper alignment of decimal points and borrowing techniques when necessary. Through guided examples and collaborative problem-solving, they practice subtracting decimals with varying numbers of decimal places up to 4 decimal places, identifying common errors and developing strategies for precise calculation.
|
How do we subtract decimals?
|
MENTOR Mathematics Grade 6 Learner's Book, page 52
Place value apparatus |
Oral questions
Written exercise
Observation
|
|
3 | 1 |
1.0 Numbers
|
1.5 Decimals: Real-life Applications
1.5 Decimals: Assessment |
By the end of the
lesson, the learner
should be able to:
identify uses of decimals in everyday contexts, solve practical problems involving decimals, and appreciate the relevance of decimals in daily life |
Learners connect decimal concepts to authentic contexts through application-based activities. They explore real-world uses of decimals in areas such as measurement, money, and data representation. Through digital resources and practical examples, they develop problem-solving approaches that apply decimal operations to everyday situations. Working collaboratively, they create their own contextual problems involving decimals and discuss how decimal understanding enhances their ability to interpret and engage with quantitative information in the world around them.
|
Where are decimals applicable in real life?
|
MENTOR Mathematics Grade 6 Learner's Book, page 53
Digital devices Real-life examples Assessment worksheet |
Oral questions
Group discussions
Project work
|
|
3 | 2 |
1.0 Numbers
|
1.6 Inequalities: Introduction
1.6 Inequalities: Forming Inequalities |
By the end of the
lesson, the learner
should be able to:
recognize inequality symbols, interpret the meaning of greater than and less than, and develop interest in mathematical relationships |
Learners explore mathematical comparison through concrete examples. They investigate the meaning and usage of inequality symbols ('>' and '<'), using number lines and real objects to develop intuitive understanding of greater than and less than relationships. Through collaborative activities, they practice identifying which symbol correctly describes the relationship between two quantities, and discuss how inequalities differ from equations in what they communicate about number relationships.
|
How do we solve simple inequalities?
|
MENTOR Mathematics Grade 6 Learner's Book, page 54
Number cards Inequality symbols MENTOR Mathematics Grade 6 Learner's Book, page 55 |
Oral questions
Written exercise
Observation
|
|
3 | 3 |
1.0 Numbers
|
1.6 Inequalities: Simplifying
1.6 Inequalities: Solving |
By the end of the
lesson, the learner
should be able to:
simplify inequality expressions, collect like terms in inequalities, and develop systematic approaches to mathematical manipulation |
Learners build algebraic manipulation skills through structured practice. Using cards or charts with inequality expressions, they explore techniques for simplifying inequalities, focusing on collecting like terms to create clearer expressions. Through guided examples and collaborative problem-solving, they develop understanding of how simplification preserves the inequality relationship while making it easier to interpret. They create their own inequality expressions for peers to simplify, reinforcing procedural fluency through teaching and explanation.
|
How do we simplify inequalities?
|
MENTOR Mathematics Grade 6 Learner's Book, page 56
Cards with inequalities Charts MENTOR Mathematics Grade 6 Learner's Book, page 57 Inequality cards |
Oral questions
Written exercise
Group work
|
|
3 | 4 |
1.0 Numbers
|
1.6 Inequalities: Real-life Application
|
By the end of the
lesson, the learner
should be able to:
connect inequalities to real-world situations, model practical problems using inequalities, and value the applicability of inequalities in daily life |
Learners explore authentic applications of inequalities through contextual problem-solving. They identify real-world situations that can be modeled using inequalities (such as budget constraints, time limitations, or physical boundaries) and develop mathematical approaches to analyzing these scenarios. Working collaboratively, they create their own real-life problems that involve inequalities and discuss how inequality concepts provide valuable tools for describing constraints and making decisions in everyday contexts.
|
Where are inequalities used in real life?
|
MENTOR Mathematics Grade 6 Learner's Book, page 58
Real-life examples |
Oral questions
Group discussions
Project work
|
|
3 | 5 |
1.0 Numbers
|
1.6 Inequalities: Digital Activities
1.6 Inequalities: Assessment |
By the end of the
lesson, the learner
should be able to:
use technology to explore inequality concepts, engage with digital inequality tools, and show enthusiasm for technology-enhanced mathematics learning |
Learners extend their understanding through technology-enhanced exploration. Using available digital devices, they engage with interactive applications that visualize inequality concepts and provide practice with forming, simplifying, and solving inequalities. Through collaborative digital activities, they explore dynamic representations of inequalities and discuss how technology can enhance understanding of mathematical relationships. They share discoveries and strategies for effectively using digital tools to support mathematics learning.
|
How can digital tools help us understand inequalities?
|
MENTOR Mathematics Grade 6 Learner's Book, page 59
Digital devices Educational apps MENTOR Mathematics Grade 6 Learner's Book, page 60 Assessment worksheet |
Practical assessment
Observation
Peer assessment
|
|
4 | 1 |
2.0 Measurement
|
2.1 Length - Millimetres as units of length (14 Lessons)
2.1 Length - Relationship between millimetres and centimetres |
By the end of the
lesson, the learner
should be able to:
Use the millimetre (mm) as a unit of measuring length Identify appropriate contexts for using millimetres Develop an appreciation for precision in measurement |
Learners:
Discuss and identify millimetre as a unit of measuring length using rulers Examine objects that require measurement in millimetres Measure small objects using rulers marked in millimetres Compare measurements and discuss the importance of precision |
Why do we need smaller units to measure length?
|
MENTOR Mathematics Grade 6 Learner's Book, page 98
Rulers marked in millimetres Small objects for measurement Rulers Measurement conversion charts |
Oral questions
Observation
Written exercise
|
|
4 | 2 |
2.0 Measurement
|
2.1 Length - Converting centimetres to millimetres
2.1 Length - Converting millimetres to centimetres |
By the end of the
lesson, the learner
should be able to:
Convert centimetres to millimetres confidently Apply conversion skills to solve practical problems Appreciate the need for unit conversions in measurement |
Learners:
Convert given measurements from centimetres to millimetres Create and solve conversion problems in pairs/groups Apply the relationship that 1 cm = 10 mm in various contexts Share conversion strategies |
How do we convert centimetres to millimetres?
|
MENTOR Mathematics Grade 6 Learner's Book, page 99
Conversion charts Measurement worksheets MENTOR Mathematics Grade 6 Learner's Book, page 100 Measurement materials Conversion worksheets |
Written exercise
Peer assessment
Class assignment
|
|
4 | 3 |
2.0 Measurement
|
2.1 Length - Addition of lengths in centimetres and millimetres
2.1 Length - Subtraction of lengths in centimetres and millimetres |
By the end of the
lesson, the learner
should be able to:
Add measurements involving centimetres and millimetres Regroup millimetres to centimetres when necessary Show interest in solving addition problems involving length |
Learners:
Add lengths given in cm and mm Regroup 10 mm to 1 cm when necessary Solve practical addition problems involving length Create addition problems for peers to solve |
How do we add lengths in centimetres and millimetres?
|
MENTOR Mathematics Grade 6 Learner's Book, page 101
Addition worksheets Rulers MENTOR Mathematics Grade 6 Learner's Book, page 102 Subtraction worksheets Measuring tools |
Written exercise
Group activities
Class assignment
|
|
4 | 4 |
2.0 Measurement
|
2.1 Length - Multiplication of lengths
|
By the end of the
lesson, the learner
should be able to:
Multiply lengths in centimetres and millimetres by whole numbers Regroup millimetres to centimetres when necessary Apply multiplication skills to solve real-life problems |
Learners:
Multiply lengths given in cm and mm by whole numbers Regroup 10 mm to 1 cm when necessary Solve word problems involving multiplication of lengths Create visual representations of multiplication problems |
How do we multiply lengths in centimetres and millimetres?
|
MENTOR Mathematics Grade 6 Learner's Book, page 103
Multiplication worksheets Measuring tools |
Written exercise
Group activities
Class assignment
|
|
4 | 5 |
2.0 Measurement
|
2.1 Length - Division of lengths
2.1 Length - Circumference of a circle |
By the end of the
lesson, the learner
should be able to:
Divide lengths in centimetres and millimetres by whole numbers Regroup centimetres to millimetres when necessary Show interest in solving division problems involving length |
Learners:
Divide lengths given in cm and mm by whole numbers Regroup 1 cm to 10 mm when necessary Solve practical division problems involving length Share division strategies |
How do we divide lengths in centimetres and millimetres?
|
MENTOR Mathematics Grade 6 Learner's Book, page 104
Division worksheets Measuring tools MENTOR Mathematics Grade 6 Learner's Book, page 105 Circular objects String Rulers |
Written exercise
Oral questions
Observation
|
|
5 | 1 |
2.0 Measurement
|
2.1 Length - Diameter and radius
2.1 Length - Relationship between circumference and diameter |
By the end of the
lesson, the learner
should be able to:
Identify diameter as a line passing through the center of a circle Identify radius as the distance from center to circumference Appreciate the relationship between diameter and radius |
Learners:
Identify and measure diameter of circular objects Identify and measure radius of circular objects Establish that diameter equals twice the radius Create diagrams showing diameter and radius |
What is the relationship between diameter and radius?
|
MENTOR Mathematics Grade 6 Learner's Book, page 106
Circular objects Rulers Drawing materials MENTOR Mathematics Grade 6 Learner's Book, page 107 String Calculators |
Oral questions
Written exercise
Practical assessment
|
|
5 | 2 |
2.0 Measurement
|
2.1 Length - Finding circumference using formula
2.1 Length - Real-life applications of circumference |
By the end of the
lesson, the learner
should be able to:
Apply the formula C = πd to find circumference Apply the formula C = 2πr to find circumference Appreciate the application of formulas in mathematics |
Learners:
Use the formula C = πd to find circumference when given diameter Use the formula C = 2πr to find circumference when given radius Solve practical problems involving circumference Share solution strategies |
How do we calculate the circumference of a circle?
|
MENTOR Mathematics Grade 6 Learner's Book, page 108
Calculators Worksheet with problems MENTOR Mathematics Grade 6 Learner's Book, page 109 Real-life circular objects Measuring tools |
Written exercise
Group work
Class assignment
|
|
5 | 3 |
2.0 Measurement
|
2.1 Length - Consolidation activities
|
By the end of the
lesson, the learner
should be able to:
Apply all concepts related to length and circumference Solve integrated problems involving length measurement Show confidence in length measurement applications |
Learners:
Review key concepts of length measurement Solve mixed problems involving conversions, operations, and circumference Assess their understanding of length concepts Discuss areas needing further practice |
How do we apply length measurement concepts to solve problems?
|
MENTOR Mathematics Grade 6 Learner's Book, page 110
Review worksheets Measuring tools |
Written assessment
Peer assessment
Self-assessment
|
|
5 | 4 |
2.0 Measurement
|
2.2 Area - Area of triangles (6 Lessons)
2.2 Area - Finding area of triangles |
By the end of the
lesson, the learner
should be able to:
Understand the concept of area of triangles Relate area of triangles to area of rectangles/squares Show interest in measuring area of triangular shapes |
Learners:
Explore the relationship between triangles and rectangles/squares Cut diagonals in rectangles/squares to form triangles Discover that triangles formed have half the area of the original shape Discuss findings and make connections |
How is the area of a triangle related to the area of a rectangle?
|
MENTOR Mathematics Grade 6 Learner's Book, page 118
Rectangular/square paper Scissors Grid paper MENTOR Mathematics Grade 6 Learner's Book, page 119 Triangular shapes Rulers Calculators |
Observation
Practical work
Oral questions
|
|
5 | 5 |
2.0 Measurement
|
2.2 Area - Area of combined shapes
2.2 Area - More combined shapes |
By the end of the
lesson, the learner
should be able to:
Identify combined shapes involving rectangles and triangles Calculate area of combined shapes Appreciate the application of area in composite figures |
Learners:
Identify combined shapes made up of rectangles/squares and triangles Break down combined shapes into rectangles/squares and triangles Calculate areas of individual shapes and add them Create their own combined shapes and find their areas |
How do we find the area of combined shapes?
|
MENTOR Mathematics Grade 6 Learner's Book, page 120
Cutouts of combined shapes Grid paper Calculators MENTOR Mathematics Grade 6 Learner's Book, page 121 Worksheets with combined shapes |
Written exercise
Group work
Project assessment
|
|
6 | 1 |
2.0 Measurement
|
2.2 Area - Estimating area of circles
2.2 Area - Applications of area |
By the end of the
lesson, the learner
should be able to:
Estimate area of circles by counting squares Develop estimation skills for irregular shapes Show interest in area approximation methods |
Learners:
Draw circles on square grid paper Count complete squares within the circle Estimate area by counting squares and partial squares Compare their estimation techniques and results |
How can we estimate the area of a circle?
|
MENTOR Mathematics Grade 6 Learner's Book, page 122
Square grid paper Circular objects Compasses MENTOR Mathematics Grade 6 Learner's Book, page 123 Real-life application examples Measuring tools Calculators |
Practical assessment
Observation
Written exercise
|
|
6 | 2 |
2.0 Measurement
|
2.3 Capacity - Relationship between cubic centimetres, millilitres and litres (6 Lessons)
2.3 Capacity - Converting litres to millilitres |
By the end of the
lesson, the learner
should be able to:
Identify relationship among cubic centimetres, millilitres and litres Understand volumetric measurement concepts Appreciate connections between volume and capacity |
Learners:
Experiment with 1 cm³ cube containers and water Establish that 1 cm³ equals 1 ml Discover that 1000 ml equals 1 litre Discuss relationships between units |
What is the relationship between cubic centimetres, millilitres, and litres?
|
MENTOR Mathematics Grade 6 Learner's Book, page 139
Cubic centimetre blocks Measuring cylinders Water MENTOR Mathematics Grade 6 Learner's Book, page 140 Conversion charts Measuring containers Worksheets |
Practical assessment
Observation
Oral questions
|
|
6 | 3 |
2.0 Measurement
|
2.3 Capacity - Converting millilitres to litres
|
By the end of the
lesson, the learner
should be able to:
Convert millilitres to litres accurately Apply conversion skills to practical problems Value precision in measurement |
Learners:
Apply the relationship that 1000 ml = 1 litre Convert various measurements from millilitres to litres Solve real-life problems requiring ml to l conversions Create conversion tables |
How do we convert millilitres to litres?
|
MENTOR Mathematics Grade 6 Learner's Book, page 141
Conversion charts Measuring containers Worksheets |
Written exercise
Group activities
Class assignment
|
|
6 | 4 |
2.0 Measurement
|
2.3 Capacity - Converting litres to cubic centimetres
2.3 Capacity - Converting cubic centimetres to litres |
By the end of the
lesson, the learner
should be able to:
Convert litres to cubic centimetres Understand the volumetric equivalence Appreciate the relationship between capacity and volume |
Learners:
Apply the relationship that 1 litre = 1000 cm³ Convert various measurements from litres to cubic centimetres Solve problems involving conversions Discuss practical applications |
How do we convert litres to cubic centimetres?
|
MENTOR Mathematics Grade 6 Learner's Book, page 142
Conversion charts Cubic containers Worksheets MENTOR Mathematics Grade 6 Learner's Book, page 143 |
Written exercise
Oral questions
Observation
|
|
6 | 5 |
2.0 Measurement
|
2.3 Capacity - Real-life applications of capacity
2.4 Mass - The tonne as a unit of mass (14 Lessons) |
By the end of the
lesson, the learner
should be able to:
Apply capacity measurement to real-life situations Solve practical problems involving capacity Value the relevance of capacity measurement |
Learners:
Identify situations where capacity measurement is used Solve practical problems involving capacity Discuss applications in cooking, manufacturing, etc. Create their own real-life capacity problems |
Where do we use capacity measurement in daily life?
|
MENTOR Mathematics Grade 6 Learner's Book, page 144
Real-life containers Measuring tools MENTOR Mathematics Grade 6 Learner's Book, page 150 Pictures of heavy items Mass measurement charts |
Project work
Oral presentation
Written exercise
|
|
7 | 1 |
2.0 Measurement
|
2.4 Mass - Items measured in tonnes
2.4 Mass - Relationship between kilogram and tonne |
By the end of the
lesson, the learner
should be able to:
Identify real-life items measured in tonnes Appreciate contexts where tonnes are appropriate Value the relevance of mass measurement |
Learners:
Discuss items in the environment measured in tonnes Categorize items by appropriate mass units Create posters showing items measured in tonnes Present their findings to the class |
What items are typically measured in tonnes?
|
MENTOR Mathematics Grade 6 Learner's Book, page 151
Pictures of heavy items Visual aids Reference materials MENTOR Mathematics Grade 6 Learner's Book, page 152 Mass conversion charts |
Group presentations
Observation
Project assessment
|
|
7 | 2 |
2.0 Measurement
|
2.4 Mass - Estimating mass in tonnes
|
By the end of the
lesson, the learner
should be able to:
Estimate masses of various objects in tonnes Develop estimation skills for large masses Value estimation as a practical skill |
Learners:
Estimate masses of large objects in tonnes Compare estimates with actual masses when available Discuss strategies for making reasonable estimates Refine estimation techniques through practice |
How can we estimate mass in tonnes?
|
MENTOR Mathematics Grade 6 Learner's Book, page 153
Pictures of heavy items Reference materials |
Estimation exercises
Group discussion
Observation
|
|
7 | 3 |
2.0 Measurement
|
2.4 Mass - Converting kilograms to tonnes
2.4 Mass - Converting tonnes to kilograms |
By the end of the
lesson, the learner
should be able to:
Convert kilograms to tonnes accurately Apply conversion skills to solve problems Show interest in mass conversions |
Learners:
Apply the relationship that 1000 kg = 1 tonne Convert various measurements from kilograms to tonnes Solve word problems involving conversions Share conversion strategies |
How do we convert kilograms to tonnes?
|
MENTOR Mathematics Grade 6 Learner's Book, page 154
Conversion charts Worksheets Calculators MENTOR Mathematics Grade 6 Learner's Book, page 155 |
Written exercise
Oral questions
Class assignment
|
|
7 | 4 |
2.0 Measurement
|
2.4 Mass - Addition of mass in tonnes and kilograms
2.4 Mass - Subtraction of mass in tonnes and kilograms |
By the end of the
lesson, the learner
should be able to:
Add masses given in tonnes and kilograms Regroup kilograms to tonnes when necessary Show interest in mass calculations |
Learners:
Add masses given in tonnes and kilograms Regroup 1000 kg to 1 tonne when necessary Solve word problems involving addition of mass Create addition problems for peers to solve |
How do we add masses in tonnes and kilograms?
|
MENTOR Mathematics Grade 6 Learner's Book, page 156
Addition worksheets Calculators MENTOR Mathematics Grade 6 Learner's Book, page 157 Subtraction worksheets |
Written exercise
Oral questions
Peer assessment
|
|
7 | 5 |
2.0 Measurement
|
2.4 Mass - Multiplication of mass
2.4 Mass - Division of mass |
By the end of the
lesson, the learner
should be able to:
Multiply masses in tonnes and kilograms by whole numbers Regroup kilograms to tonnes when necessary Show interest in mass calculations |
Learners:
Multiply masses given in tonnes and kilograms by whole numbers Regroup 1000 kg to 1 tonne when necessary Solve word problems involving multiplication of mass Share multiplication strategies |
How do we multiply masses in tonnes and kilograms?
|
MENTOR Mathematics Grade 6 Learner's Book, page 158
Multiplication worksheets Calculators MENTOR Mathematics Grade 6 Learner's Book, page 159 Division worksheets |
Written exercise
Oral questions
Observation
|
|
8 | 1 |
2.0 Measurement
|
2.4 Mass - Real-life applications of mass
2.4 Mass - Digital mass measurement |
By the end of the
lesson, the learner
should be able to:
Apply mass measurement concepts to real-life situations Solve practical problems involving mass Appreciate the relevance of mass measurement |
Learners:
Identify real-life situations where mass measurement is used Solve practical problems involving mass Discuss applications in transportation, farming, etc. Create their own mass-related problems |
Where do we use mass measurement in daily life?
|
MENTOR Mathematics Grade 6 Learner's Book, page 160
Real-life examples Reference materials MENTOR Mathematics Grade 6 Learner's Book, page 161 Digital weighing devices (if available) Pictures of digital scales |
Project work
Oral presentation
Written exercise
|
|
8 | 2 |
2.0 Measurement
|
2.4 Mass - Consolidation activities
|
By the end of the
lesson, the learner
should be able to:
Apply all concepts related to mass measurement Solve integrated problems involving mass Show confidence in mass measurement applications |
Learners:
Review key concepts of mass measurement Solve mixed problems involving conversions and operations Assess their understanding of mass concepts Discuss areas needing further practice |
How do we apply mass measurement concepts to solve problems?
|
MENTOR Mathematics Grade 6 Learner's Book, page 162
Review worksheets Calculators |
Written assessment
Peer assessment
Self-assessment
|
|
8 | 3 |
2.0 Measurement
|
2.5 Time - a.m. and p.m. notation (10 Lessons)
2.5 Time - Writing time in a.m. and p.m. |
By the end of the
lesson, the learner
should be able to:
Identify time in a.m. and p.m. notation Understand the 12-hour clock system Show interest in time measurement |
Learners:
Discuss time in a.m. (ante meridiem) and p.m. (post meridiem) Identify morning hours as a.m. and afternoon/evening hours as p.m. Read time from analog and digital clocks Classify different activities by a.m. or p.m. occurrence |
Why do we use a.m. and p.m. to express time?
|
MENTOR Mathematics Grade 6 Learner's Book, page 163
Analog and digital clocks Time charts MENTOR Mathematics Grade 6 Learner's Book, page 164 Time worksheets Clocks |
Oral questions
Written exercise
Observation
|
|
8 | 4 |
2.0 Measurement
|
2.5 Time - 24-hour clock system
2.5 Time - Converting 12-hour to 24-hour time |
By the end of the
lesson, the learner
should be able to:
Understand the 24-hour clock system Relate 12-hour to 24-hour clock system Appreciate alternative time notation systems |
Learners:
Discuss the 24-hour clock system and its advantages Create a chart showing 12-hour and 24-hour equivalents Practice reading time in 24-hour notation Discuss contexts where 24-hour system is commonly used |
What is the 24-hour clock system and why is it used?
|
MENTOR Mathematics Grade 6 Learner's Book, page 165
24-hour clock displays Time conversion charts MENTOR Mathematics Grade 6 Learner's Book, page 166 Conversion worksheets Time charts |
Oral questions
Written exercise
Observation
|
|
8 | 5 |
2.0 Measurement
|
2.5 Time - Converting 24-hour to 12-hour time
2.5 Time - Reading travel timetables |
By the end of the
lesson, the learner
should be able to:
Convert time from 24-hour to 12-hour system Apply conversion procedures accurately Value systematic approaches to conversion |
Learners:
Convert various times from 24-hour to 12-hour notation Apply the rule that hours after 12 subtract 12 and add p.m. Solve problems involving time conversion Discuss conversion strategies |
How do we convert time from 24-hour to 12-hour system?
|
MENTOR Mathematics Grade 6 Learner's Book, page 167
Conversion worksheets Time charts MENTOR Mathematics Grade 6 Learner's Book, page 168 Sample timetables Worksheets |
Written exercise
Oral questions
Observation
|
|
9 |
Mid-term |
||||||||
10 | 1 |
2.0 Measurement
|
2.5 Time - Interpreting travel timetables
|
By the end of the
lesson, the learner
should be able to:
Interpret information from travel timetables Calculate travel durations from timetables Value time management in travel |
Learners:
Calculate duration between departure and arrival times Determine waiting times at intermediate stops Solve problems based on travel timetables Create their own sample timetables |
How do we calculate travel times using timetables?
|
MENTOR Mathematics Grade 6 Learner's Book, page 169
Sample timetables Calculators |
Written exercise
Group work
Project assessment
|
|
10 | 2 |
2.0 Measurement
|
2.5 Time - Creating travel schedules
2.5 Time - Digital time tools |
By the end of the
lesson, the learner
should be able to:
Create simple travel schedules using appropriate time notation Plan itineraries based on timetables Appreciate planning and organization |
Learners:
Create travel schedules for hypothetical journeys Use appropriate time notation (12-hour or 24-hour) Include relevant details in their schedules Present schedules to the class |
How do we create effective travel schedules?
|
MENTOR Mathematics Grade 6 Learner's Book, page 170
Sample schedules Planning templates MENTOR Mathematics Grade 6 Learner's Book, page 171 Digital time devices (if available) Pictures of digital tools |
Project work
Peer assessment
Presentation
|
|
10 | 3 |
2.0 Measurement
|
2.5 Time - Consolidation activities
2.6 Money - Budgeting (8 Lessons) |
By the end of the
lesson, the learner
should be able to:
Apply all concepts related to time measurement Solve integrated problems involving time Show confidence in time-related applications |
Learners:
Review key concepts of time measurement Solve mixed problems involving time conversions and calculations Assess their understanding of time concepts Discuss areas needing further practice |
How do we apply time measurement concepts to solve problems?
|
MENTOR Mathematics Grade 6 Learner's Book, page 172
Review worksheets Clocks MENTOR Mathematics Grade 6 Learner's Book, page 173 Sample budgets Budget templates |
Written assessment
Peer assessment
Self-assessment
|
|
10 | 4 |
2.0 Measurement
|
2.6 Money - Preparing simple budgets
2.6 Money - Buying and selling prices |
By the end of the
lesson, the learner
should be able to:
Prepare simple budgets for various scenarios Balance income and expenses in a budget Show interest in personal financial management |
Learners:
Create simple budgets for given scenarios Categorize items as income or expenses Calculate totals and determine if budget is balanced Share budgets and discuss strategies |
How do we prepare a balanced budget?
|
MENTOR Mathematics Grade 6 Learner's Book, page 174
Budget worksheets Calculators MENTOR Mathematics Grade 6 Learner's Book, page 175 Price lists Role-play materials |
Written exercise
Project work
Peer assessment
|
|
10 | 5 |
2.0 Measurement
|
2.6 Money - Calculating profit
2.6 Money - Calculating loss |
By the end of the
lesson, the learner
should be able to:
Understand the concept of profit Calculate profit from buying and selling prices Value ethical business practices |
Learners:
Discuss the meaning of profit in business Calculate profit using the formula: Profit = Selling Price - Buying Price Solve problems involving profit calculation Discuss real-life examples of profit |
How do we calculate profit in business?
|
MENTOR Mathematics Grade 6 Learner's Book, page 176
Profit calculation worksheets Calculators MENTOR Mathematics Grade 6 Learner's Book, page 177 Loss calculation worksheets |
Written exercise
Group activities
Class assignment
|
|
11 | 1 |
2.0 Measurement
|
2.6 Money - Types of taxes
|
By the end of the
lesson, the learner
should be able to:
Identify different types of taxes Understand the purpose of taxation Value taxation as a civic responsibility |
Learners:
Discuss different types of taxes (income tax, VAT, etc.) Examine examples of taxes in daily transactions Discuss the purpose and importance of taxes Research how tax money is used |
What are the different types of taxes and why do we pay them?
|
MENTOR Mathematics Grade 6 Learner's Book, page 178
Tax information materials Sample receipts with tax |
Oral questions
Research presentation
Written exercise
|
|
11 | 2 |
2.0 Measurement
|
2.6 Money - Income tax
2.6 Money - Value Added Tax (VAT) |
By the end of the
lesson, the learner
should be able to:
Understand the concept of income tax Calculate simple income tax examples Appreciate the role of income tax in society |
Learners:
Discuss income tax as a percentage of earnings Examine simple examples of income tax calculation Solve basic income tax problems Discuss how income tax contributes to society |
What is income tax and how is it calculated?
|
MENTOR Mathematics Grade 6 Learner's Book, page 179
Income tax worksheets Calculators MENTOR Mathematics Grade 6 Learner's Book, page 180 Sample receipts VAT calculation worksheets |
Written exercise
Group activities
Class assignment
|
|
11 | 3 |
2.0 Measurement
Geometry |
2.6 Money - Consolidation activities
Lines - Constructing parallel lines |
By the end of the
lesson, the learner
should be able to:
Apply all concepts related to money management Solve integrated problems involving budgeting, profit/loss, and taxation Show confidence in financial literacy |
Learners:
Review key concepts of money management Solve mixed problems involving budgeting, profit/loss, and taxes Assess their understanding of financial concepts Discuss areas needing further practice |
How do we apply financial literacy concepts in daily life?
|
MENTOR Mathematics Grade 6 Learner's Book, page 181
Review worksheets Calculators MENTOR Mathematics Learner's Book Grade 6, page 175 Geometrical instruments Rulers Objects with parallel lines |
Written assessment
Project work
Self-assessment
|
|
11 | 4 |
Geometry
|
Lines - Constructing parallel lines
Lines - Bisecting a line |
By the end of the
lesson, the learner
should be able to:
follow steps to construct parallel lines use geometrical instruments correctly appreciate use of lines in daily life |
Learners use rulers to draw horizontal lines Learners use compasses to mark arcs Learners construct parallel lines step by step |
Why do we need to draw lines?
|
MENTOR Mathematics Learner's Book Grade 6, page 175
Geometrical instruments Compasses Rulers MENTOR Mathematics Learner's Book Grade 6, page 177 Protractors |
Oral questions
Written exercise
Observation
|
|
11 | 5 |
Geometry
|
Lines - Bisecting a line
|
By the end of the
lesson, the learner
should be able to:
follow steps to bisect a line construct perpendicular bisectors value the importance of precision in measurements |
Learners draw straight lines and mark points Learners use compasses to make arcs above and below the line Learners draw vertical lines through intersection points |
Why do we need to draw lines?
|
MENTOR Mathematics Learner's Book Grade 6, page 178
Geometrical instruments Compasses Rulers |
Oral questions
Written exercise
Observation
|
|
12 | 1 |
Geometry
|
Lines - Construction of perpendicular lines
|
By the end of the
lesson, the learner
should be able to:
identify what perpendicular lines are measure angles formed by perpendicular lines appreciate use of perpendicular lines in daily life |
Learners trace lines and measure angles Learners identify that perpendicular lines form 90° angles Learners share findings with other groups |
Why do we need to draw lines?
|
MENTOR Mathematics Learner's Book Grade 6, page 179
Geometrical instruments Protractors Rulers MENTOR Mathematics Learner's Book Grade 6, page 180 Digital devices Internet resources |
Oral questions
Written exercise
Group work
|
|
12 | 2 |
Geometry
|
Angles - Angles on a straight line
Angles - Measuring angles on a straight line |
By the end of the
lesson, the learner
should be able to:
identify angles formed on a straight line recognize angles in real life situations show curiosity in identifying angles in the environment |
Learners look at pictures to identify angles formed Learners identify angles formed by Jimmy and Mary with a string Learners take walks to identify angles on straight lines |
Where can you use angles in real life?
|
MENTOR Mathematics Learner's Book Grade 6, page 183
Pictures showing angles Objects with angles MENTOR Mathematics Learner's Book Grade 6, page 184 Protractors Geometrical instruments Angle charts |
Oral questions
Written exercise
Observation
|
|
12 | 3 |
Geometry
|
Angles - Working out sum of angles on a straight line
Angles - Angles in a triangle |
By the end of the
lesson, the learner
should be able to:
recall that angles on a straight line sum up to 180° work out sum of angles on a straight line value the importance of angles in real life situations |
Learners study diagrams with angles on straight lines Learners measure angles and verify their sum is 180° Learners calculate missing angles on straight lines |
Where can you use angles in real life?
|
MENTOR Mathematics Learner's Book Grade 6, page 185
Protractors Geometrical instruments Angle worksheets MENTOR Mathematics Learner's Book Grade 6, page 187 Triangular cut-outs Scissors Paper |
Oral questions
Written exercise
Group work
|
|
12 | 4 |
Geometry
|
Angles - Angles in a triangle
Angles - Angles in a rectangle |
By the end of the
lesson, the learner
should be able to:
calculate missing angles in triangles apply the principle that angles in a triangle sum to 180° show interest in solving angle problems |
Learners measure angles in triangles Learners work out missing angles using the sum property Learners solve problems involving triangles |
Where can you use angles in real life?
|
MENTOR Mathematics Learner's Book Grade 6, page 188
Protractors Triangular shapes Worksheets MENTOR Mathematics Learner's Book Grade 6, page 189 Rectangular cut-outs Scissors Paper |
Oral questions
Written exercise
Individual work
|
|
12 | 5 |
Geometry
|
Angles - Constructing equilateral triangles
|
By the end of the
lesson, the learner
should be able to:
identify properties of equilateral triangles measure sides and angles of equilateral triangles appreciate equilateral triangles in designs |
Learners look at given triangles Learners measure sides and angles of triangles Learners discover that equilateral triangles have equal sides and angles |
Where can you use angles in real life?
|
MENTOR Mathematics Learner's Book Grade 6, page 190
Triangular shapes Rulers Protractors |
Oral questions
Written exercise
Observation
|
Your Name Comes Here