If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 | 1 |
Cube and cube roots
|
Cubes
|
By the end of the
lesson, the learner
should be able to:
Find cubes of numbers |
Defining
Discussions Solving problem Explaining |
Sets
Books Videos Charts |
KLB Mathematics
Book Two Pg 1 discovering secondary pg 1 |
|
1 | 2 |
Cube and cube roots
|
Use of tables to find cubes
Cube roots using factor method |
By the end of the
lesson, the learner
should be able to:
Use tables to find the cube of numbers |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 1-2 discovering secondary pg 2 |
|
1 | 3 |
Reciprocals
Indices and Logarithms |
Reciprocal of numbers by division
Reciprocal of number from tables Indices |
By the end of the
lesson, the learner
should be able to:
Find the reciprocal of number by division |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts Sets |
KLB Mathematics
Book Two Pg 5 discovering secondary pg 7 |
|
1 | 4 |
Indices and Logarithms
|
Negative indices
Fractional indices |
By the end of the
lesson, the learner
should be able to:
Find the negative indices |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 8-9 discovering secondary pg 11 |
|
1 | 5 |
Indices and Logarithms
|
Logarithms
Standard form Powers of 10 and common logarithms |
By the end of the
lesson, the learner
should be able to:
Write numbers in logarithms and vice versa |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts Sets |
KLB Mathematics
Book Two Pg 13-15 discovering secondary pg 15 |
|
1 | 6 |
Indices and Logarithms
|
Logarithms of positive numbers less than 1
Antilogarithms Applications of logarithms |
By the end of the
lesson, the learner
should be able to:
Find the logarithms of positive numbers less than 1 |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 18 discovering secondary pg 15 |
|
2 | 1 |
Indices and Logarithms
|
Roots
|
By the end of the
lesson, the learner
should be able to:
Use log tables to find roots of numbers |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 24-25 discovering secondary pg 21 |
|
2 | 2 |
Gradient and equations of straight lines
|
Gradient
Equation of a line |
By the end of the
lesson, the learner
should be able to:
Find gradient of straight line |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 27-29 discovering secondary pg23 |
|
2 | 3 |
Gradient and equations of straight lines
|
Linear equation y=mx+c
The y-intercept |
By the end of the
lesson, the learner
should be able to:
Find linear equations in the form y=mx+c |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 34-36 discovering secondary pg 27 |
|
2 | 4 |
Gradient and equations of straight lines
|
The graph of a straight line
Perpendicular lines Parallel lines |
By the end of the
lesson, the learner
should be able to:
Draw the graph of a straight line |
|
Sets
Books Videos Charts Apparatus |
KLB Mathematics
Book Pg39-40 discovering secondary pg 29 |
|
2 | 5 |
Reflection and congruence
|
Symmetry
Reflection |
By the end of the
lesson, the learner
should be able to:
Find the lines of symmetry of shapes |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 46-47 Discovering secondary pg 32 |
|
2 | 6 |
Reflection and congruence
|
Some general deductions using reflection
Congruence |
By the end of the
lesson, the learner
should be able to:
Prove that vertically opposite angles are equal |
Defining
Discussions Solving problem Explaining |
Sets
Books Videos Charts Apparatus |
KLB Mathematics
Book Two Pg 56-57 Discovering secondary pg 34 |
|
3 | 1 |
Reflection and congruence
|
Congruent triangles
The ambiguous case |
By the end of the
lesson, the learner
should be able to:
State the conditions that satisfy congruent triangles |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 63-64 Discovering secondary pg 39 |
|
3 | 2 |
Trigonometry
|
Pythagoras Theorem
Solutions of problems Using Pythagoras Theorem |
By the end of the
lesson, the learner
should be able to:
Derive Pythagoras Theorem |
Deriving Pythagoras Theorem
|
Chalkboard Charts Illustrating derived theorem
Charts illustrating Pythagoras theorem |
KLB BK2 Pg 120 Discovering secondary pg 67
|
|
3 | 3 |
Trigonometry
|
Application to real life Situation
Trigonometry Tangent, sine and cosines Trigonometric Table |
By the end of the
lesson, the learner
should be able to:
Use the formula A = ?s(s-a)(s-b)(s-c) to solve problems in real life |
Solving problems in real life using the formula A = ?s(s-a)(s-b)(s-c)
|
Mathematical table
Charts illustrating tangent, sine and cosine |
KLB BK2 Pg 159 Discovering secondary pg 67
|
|
3 | 4 |
Trigonometry
|
Angles and sides of a right angled triangle
Establishing Relationship of sine and cosine of complimentary angles |
By the end of the
lesson, the learner
should be able to:
Use the sine, cosine and tangent in calculating the length of a right angled triangle and also finding the angle given two sides and unknown angle The length can be obtained if one side is given and an angle |
Using mathematical tables Finding the length using sine ratio Finding the length using Cosine and tangent ratio Finding the angle using Sine, cosine and tangent
|
Mathematical table Charts Chalkboard
Chalkboards |
KLB BK2 Pg 125, 139, 140 Discovering secondary pg
|
|
3 | 5 |
Trigonometry
|
Sines and cosines of Complimentary angles
Relationship between tangent, sine and cosine Trigonometric ratios of special angles 30, 45, 60 and 90 |
By the end of the
lesson, the learner
should be able to:
Use the relationship of sine and cosine of complimentary angles in solving problems |
Solving problems involving the sines and cosines of complimentary angles
|
Chalkboard Charts illustrating the relationship of sines and cosines of complimentary angles
Charts showing the three related trigonometric ratio Charts showing isosceles right angled triangle Charts illustrating Equilateral triangle |
KLB BK2 Pg 145
|
|
3 | 6 |
Trigonometry
|
Application of Trigonometric ratios in solving problems
Logarithms of Sines |
By the end of the
lesson, the learner
should be able to:
Solve trigonometric problems without using tables |
Solving trigonometric problems of special angles
|
Chalkboard
Chalkboard Mathematical tables |
KLB BK2 Pg 148
|
|
4 | 1 |
Trigonometry
|
Logarithms of cosines And tangents
Reading tables of logarithms of sines, cosines and tangents Application of trigonometry to real life situations |
By the end of the
lesson, the learner
should be able to:
Read the logarithm of cosines and tangents from mathematical tables |
Reading logarithms of cosine and tangent from mathematical table
|
Chalkboard Mathematical table
Mathematical table |
KLB BK2 Pg 150-152
|
|
4 | 2 |
Trigonometry
|
Area of a triangle Area of a triangle given the base and height (A = ? bh)
Area of a triangle using the formula (A = ? absin?) |
By the end of the
lesson, the learner
should be able to:
Calculate the are of a triangle given the base and height |
Calculating the area of a triangle given the base and height
|
Chart illustrating worked problem Chalkboard
Charts illustrating a triangle with two sides and an included angle Charts showing derived formula |
KLB BK2 Pg 155
|
|
4 | 3 |
Trigonometry
|
Area of a triangle using the formula A = ?s(s-a)(s-b)(s-c)
Area of Quadrilateral and Polygons Area of a square, rectangle, rhombus, parallelogram and trapezium Area of a kite |
By the end of the
lesson, the learner
should be able to:
Solve problems on the area of a triangle Given three sizes using the formula A = ?s(s-a)(s-b)(s-c) |
Solving problems on the area of triangle given three sides of a triangle
|
Charts illustrating a triangle with three sides Charts illustrating a worked example i.e. mathematical table
Charts illustrating formula used in calculating the areas of the quadrilateral Model of a kite |
KLB BK2 Pg 157-158
|
|
4 | 4 |
Trigonometry
|
Area of other polygons (regular polygon) e.g. Pentagon
Area of irregular Polygon Area of part of a circle Area of a sector (minor sector and a major sector) |
By the end of the
lesson, the learner
should be able to:
Find the area of a regular polygon |
Calculating the area of a regular polygon
|
Mathematical table Charts illustrating Polygons
Charts illustrating various irregular polygons Polygonal shapes Charts illustrating sectors |
KLB BK2 Pg 164
|
|
4 | 5 |
Trigonometry
|
Defining a segment of a circle Finding the area of a segment of a circle
Area of a common region between two circles given the angles and the radii |
By the end of the
lesson, the learner
should be able to:
- Define what a segment of a circle is - Find the area of a segment of a circle |
Finding the area of a segment by first finding the area of a sector less the area of a smaller sector given R and r and angle ?
|
Chart illustrating a Segment
Charts illustrating common region between the circles Use of a mathematical table during calculation |
KLB BK2 Pg 169-170
|
|
4 | 6 |
Trigonometry
|
Area of a common region between two circles given only the radii of the two circles and a common chord
Surface area of solids Surface area of prisms Cylinder (ii) Triangular prism (iii) Hexagonal prism Area of a square based Pyramid |
By the end of the
lesson, the learner
should be able to:
Calculate the area of common region between two circle given the radii of the two intersecting circles and the length of a common chord of the two circles |
Finding the area of a common region between two intersecting
|
Charts illustrating common region between two intersecting circles
Models of cylinder, triangular and hexagonal prisms Models of a square based pyramid |
KLB BK 2 Pg 176
|
|
5 | 1 |
Trigonometry
|
Surface area of a Rectangular based Pyramid
Surface area of a cone using the formula A = ?r2 + ?rl |
By the end of the
lesson, the learner
should be able to:
Find the surface area of a rectangular based pyramid |
Finding the surface area of a rectangular based pyramid
|
Models of a Rectangular based pyramid
Models of a cone |
KLB BK 2 Pg 179-180
|
|
5 | 2 |
Trigonometry
|
Surface area of a frustrum of a cone and a pyramid
Finding the surface area of a sphere Surface area of a Hemispheres |
By the end of the
lesson, the learner
should be able to:
Find the surface area of a frustrum of a cone and pyramid |
Finding the surface area of a frustrum of a cone and a pyramid
|
Models of frustrum of a cone and a pyramid
Models of a sphere Charts illustrating formula for finding the surface area of a sphere Models of a hemisphere |
KLB BK 2 Pg 182
|
|
5 | 3 |
Trigonometry
|
Volume of Solids Volume of prism (triangular based prism)
Volume of prism (hexagonal based prism) given the sides and angle |
By the end of the
lesson, the learner
should be able to:
Find the volume of a triangular based prism |
Finding the volume of a triangular based prism
|
Models of a triangular based prism
Models of hexagonal based prism |
KLB BK 2 Pg 186
|
|
5 | 4 |
Trigonometry
|
Volume of a pyramid (square based and rectangular based)
Volume of a cone Volume of a frustrum of a cone |
By the end of the
lesson, the learner
should be able to:
Find the volume of a square based pyramid and rectangular based pyramid |
Finding the surface area of the base Applying the formula V=?x base area x height to get the volume of the pyramids (square and rectangular based)
|
Models of square and Rectangular based Pyramids
Model of a cone Models of a frustrum of a cone |
KLB BK 2 Pg 189-190
|
|
5 | 5 |
Trigonometry
|
Volume of a frustrum of a pyramid
Volume of a sphere (v = 4/3?r3) Volume of a Hemisphere {(v = ? (4/3?r3)} |
By the end of the
lesson, the learner
should be able to:
Find the volume of a frustrum of a Pyramid |
Finding volume of a full pyramid Finding volume of cutoff pyramid Find volume of the remaining fig (frustrum) by subtracting i.e. Vf = (V ? v)
|
Models of frustrum of a pyramid
Model of a sphere Mathematical table Models of hemisphere |
KLB BK 2 Pg 194
|
|
5 | 6 |
Trigonometry
Trigonometric Ratios |
Application of area of triangles to real life
Tangent of an angle |
By the end of the
lesson, the learner
should be able to:
Use the knowledge of the area of triangles in solving problems in real life situation |
Solving problems in real life using the knowledge of the area of triangle
|
Mathematical table Chart illustrating formula used
Protractor Ruler Right corners Mathematical tables |
KLB BK 2 Pg 159
|
|
6 | 1 |
Trigonometric Ratios
|
Tangent of an angle
Using tangents in calculations Application of tangents |
By the end of the
lesson, the learner
should be able to:
find the tangent of an angle from tables |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
6 | 2 |
Trigonometric Ratios
|
The sine of an angle
The cosine of an angle |
By the end of the
lesson, the learner
should be able to:
find the sine of an angle by calculations and through tables |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
6 | 3 |
Trigonometric Ratios
|
Application of sine and cosine
Complementary angles Special angles |
By the end of the
lesson, the learner
should be able to:
apply sines to work out lengths and angles. Apply cosine to work out length and angles |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
6 | 4 |
Trigonometric Ratios
|
Application of Special angles
Logarithms of sines, cosines and tangents |
By the end of the
lesson, the learner
should be able to:
apply the knowledge of special angles to solve problems |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
6 | 5 |
Trigonometric Ratios
|
Relationship between sin, cos and tan
Application to real life situation Problem solving |
By the end of the
lesson, the learner
should be able to:
relate sin, cos and tan that is tan?=sin? cos? Solve problems using the relationship |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
6 | 6 |
Area of A Triangle
|
Area =
Solve problems involving = |
By the end of the
lesson, the learner
should be able to:
derive the formula Area = |
Discussions
Drawing triangles Measuring lengths/angles Calculating area |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 155-157
|
|
7 | 1 |
Area of A Triangle
Area of Quadrilaterals |
A =?s(s-a) (s-b) (s-c)
Problem solving Area of parallelogram |
By the end of the
lesson, the learner
should be able to:
find the area of a triangle given the three sides |
Discussions
Drawing triangles Measuring lengths/angles Calculating area |
Protractor
Ruler Right corners Mathematical tables Parallelograms Trapeziums Polygons Squares/rectangles |
KLB Maths Bk2 Pg. 155-157
|
|
7 | 2 |
Area of Quadrilaterals
|
Area of Rhombus
Area of trapezium and kite Area of regular polygons |
By the end of the
lesson, the learner
should be able to:
find the area of a regular polygon. |
Drawing trapeziums/polygons
Measuring lengths/angles Reading mathematical tables Discussions |
Parallelograms
Trapeziums Polygons Squares/rectangles Mathematical tables Mathematical tables Chalkboard illustrations |
KLB Maths Bk2 Pg. 161
|
|
7 | 3 |
Area of Quadrilaterals
Area of Part of a Circle |
Problem solving
Area of a sector |
By the end of the
lesson, the learner
should be able to:
solve problems on area of quadrilaterals and other polygons |
Learners solve problems
|
Parallelograms
Trapeziums Polygons Squares/rectangles Mathematical tables Circles Chart illustrating the area of a sector |
KLB Maths Bk2 Pg. 165-166
|
|
7 | 4 |
Area of Part of a Circle
|
Area of a segment
Common region between two circles Common region between two circles |
By the end of the
lesson, the learner
should be able to:
find area of a segment |
Drawing circles
Measuring radii/diameters Measuring angles Calculating the area of a circle Discussions |
Circles
Chart illustrating the area of a minor segment |
KLB Maths Bk2 Pg. 167-169
|
|
7 | 5 |
Area of Part of a Circle
Surface Area of Solids |
Problem solving
Surface area of prisms |
By the end of the
lesson, the learner
should be able to:
solve problems involving the area of part of a circle |
Drawing circles
Measuring radii/diameters Measuring angles Calculating the area of a circle Discussions |
Circles
Chart illustrating the area of a minor segment Chalkboard illustrations Prism Chalkboard illustrations |
KLB Maths Bk2 Pg. 167-169
|
|
7 | 6 |
Surface Area of Solids
|
Surface area of pyramid
Surface area of a cone Surface area of frustrum with circular base |
By the end of the
lesson, the learner
should be able to:
find the surface area of a pyramid |
Drawing pyramids
Measuring lengths/ angles Opening pyramids to form nets Discussions Calculating area |
Pyramids with square base, rectangular base, triangular base
Cone Chart illustrating the surface area of a frustrum |
KLB Maths Bk2 Pg. 178
|
|
8 | 1 |
Surface Area of Solids
|
Surface area of frustrum with square base
Surface area of frustrum with rectangular base |
By the end of the
lesson, the learner
should be able to:
find the surface area of frustrum with square base |
Drawing cones/frustums
Making cones/frustums Measuring lengths/ angles Discussions Learners find the surface area |
Chart illustrating frustrum with a square base
Chart illustrating frustrum with a rectangular base |
KLB Maths Bk2 Pg. 181-183
|
|
8 | 2 |
Surface Area of Solids
Volume of Solids |
Surface area of spheres
Problem solving Volume of prism |
By the end of the
lesson, the learner
should be able to:
find the surface area of a sphere |
Sketching spheres
Making spheres Measuring diameters/ radii of spheres Discussions |
Chalkboard illustrations
Past paper questions Prism |
KLB Maths Bk2 Pg. 183
|
|
8 | 3 |
Volume of Solids
|
Volume of pyramid
Volume of a cone Volume of a sphere |
By the end of the
lesson, the learner
should be able to:
find the volume of a pyramid |
Drawing pyramids
Making pyramids Opening pyramids to form nets Discussions |
Pyramid
Cone Sphere |
KLB Maths Bk2 Pg. 189-190
|
|
8 | 4 |
Volume of Solids
|
Volume of frustrum
Volume of frustrum with a square base |
By the end of the
lesson, the learner
should be able to:
find the volume of a frustrum with a circular base |
Making cones/frustums
Opening cones/frustums to form nets |
Frustrum with circular base
Frustrum with square base |
KLB Maths Bk2 Pg. 192-193
|
|
8 | 5 |
Volume of Solids
|
Volume of frustrum with a rectangular base
Application to real life situation Problem solving |
By the end of the
lesson, the learner
should be able to:
find the volume of a frustrum with a rectangular base |
Making cones/frustums
Opening cones/frustums to form nets |
Frustrum with rectangular base
Models of pyramids, prism, cones and spheres Past paper questions |
KLB Maths Bk2 Pg. 192-193
|
|
8 | 6 |
Quadratic Expressions and Equations
|
Expansion of Algebraic Expressions
Quadratic identities |
By the end of the
lesson, the learner
should be able to:
expand algebraic expressions |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 203
|
|
9 |
Mid-term break |
|||||||
10 | 1 |
Quadratic Expressions and Equations
|
Application of identities
Factorise the Identities Factorise other quadratic expressions |
By the end of the
lesson, the learner
should be able to:
identify and use the three Algebraic identities |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions Chart illustrating factorization of a quadratic expression |
KLB Maths Bk2 Pg. 204-205
|
|
10 | 2 |
Quadratic Expressions and Equations
|
Factorisation of expressions of the form k2-9y2
Simplification of an expression by factorisation |
By the end of the
lesson, the learner
should be able to:
factorise a difference of two squares |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 205-208
|
|
10 | 3 |
Quadratic Expressions and Equations
|
Solving quadratic equations
The formation of quadratic equations Formation and solving of quadratic equations from word problems |
By the end of the
lesson, the learner
should be able to:
solve quadratic equations |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 208
|
|
10 | 4 |
Quadratic Expressions and Equations
Linear Inequalities |
Solving on quadratic equations
Forming quadratic equations from the roots Inequalities symbols |
By the end of the
lesson, the learner
should be able to:
solve problems on quadratic equations |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions Number lines Graph papers Square boards Negative and positive numbers |
KLB Maths Bk2 Pg. 208-210
|
|
10 | 5 |
Linear Inequalities
|
Number line
Inequalities in one unknown |
By the end of the
lesson, the learner
should be able to:
illustrate inequalities on a number line |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines
Graph papers Square boards Negative and positive numbers |
KLB Maths Bk2 Pg. 213-224
|
|
10 | 6 |
Linear Inequalities
|
Graphical representation
Graphical solutions of simultaneous linear inequalities Graphical solutions of simultaneous linear inequalities |
By the end of the
lesson, the learner
should be able to:
represent linear inequalities in one unknown graphically |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines Graph papers
Square boards Negative and positive numbers Number lines Graph papers |
KLB Maths Bk2 Pg. 213-224
|
|
11 | 1 |
Linear Inequalities
|
Area of the wanted region
Inequalities from inequality graphs |
By the end of the
lesson, the learner
should be able to:
calculate the area of the wanted region |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines
Graph papers Square boards Negative and positive numbers |
KLB Maths Bk2 Pg. 213-224
|
|
11 | 2 |
Linear Inequalities
Linear Motion Linear Motion |
Problem solving.
Displacement, velocity, speed and acceleration Distinguishing terms |
By the end of the
lesson, the learner
should be able to:
solve problems on linear inequalities |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines
Graph papers Square boards Negative and positive numbers Stones Pieces of paper |
KLB Maths Bk2 Pg. 213-224
|
|
11 | 3 |
Linear Motion
|
Distinguishing velocity and acceleration
Distance time graphs |
By the end of the
lesson, the learner
should be able to:
determine velocity and acceleration |
Learners determine velocity and acceleration
Plotting graphs Drawing graphs |
Graph papers
Stones Pieces of paper |
KLB Maths Bk2 Pg. 228-238
|
|
11 | 4 |
Linear Motion
|
Interpret the velocity time graph
Interpreting graphs Relative speed (objects moving in the same direction) |
By the end of the
lesson, the learner
should be able to:
interpret a velocity time graph |
Learners interpret a velocity time graph
|
Drawn graphs
Real life situation Chalkboard illustrations |
KLB
Maths Bk2 Pg.333 |
|
11 | 5 |
Linear Motion
Statistics |
Problem solving
Definition |
By the end of the
lesson, the learner
should be able to:
solve problems on linear motion |
Question answer method
|
Past paper questions
Weighing balance Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB
Maths Bk2 Pg.330 |
|
11 | 6 |
Statistics
|
Collection and organization of data
Frequency tables Grouped data |
By the end of the
lesson, the learner
should be able to:
collect and organize data |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB Maths Bk2 Pg. 241-252
|
|
12 | 1 |
Statistics
|
Mean of ungrouped data
Median of ungrouped data Mean of ungrouped data |
By the end of the
lesson, the learner
should be able to:
calculate the mean of ungrouped data |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB Maths Bk2 Pg. 241-252
|
|
12 | 2 |
Statistics
|
Median of a grouped data modal class
Data Representation. Line graphs |
By the end of the
lesson, the learner
should be able to:
state the modal class and calculate the median of a grouped data. |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB Maths Bk2 Pg. 241-252
|
|
12 | 3 |
Statistics
|
Bar graphs
Pictogram Histograms |
By the end of the
lesson, the learner
should be able to:
represent data in form of a bar graph |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers Pictures which are whole, half, quarter |
KLB Maths Bk2 Pg. 241-252
|
|
12 | 4 |
Statistics
|
Frequency polygons
Histograms with uneven distribution |
By the end of the
lesson, the learner
should be able to:
represent data in form of frequency polygons |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Histograms drawn. Data
Data with uneven classes |
KLB Maths Bk2 Pg. 241-252
|
|
12 | 5 |
Statistics
Angle Properties of a Circle |
Interpretation of data
Problem solving Arc chord segment |
By the end of the
lesson, the learner
should be able to:
interpret data from real life situation |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Real life situations
Past paper questions Chart illustrating arc chord and segment |
KLB Maths Bk2 Pg. 241-252
|
|
12 | 6 |
Angle Properties of a Circle
|
Angles subtended by the same arc in the same segment
Angle at the centre and at the circumference |
By the end of the
lesson, the learner
should be able to:
relate and compute angles subtended by an arc of a circle at the circumference |
Discussions
Drawing circles Measuring radii/diameters/angles Identifying the parts of a circle |
Chart illustrating Angles subtended by the same arc in same segment are equal
Chart illustrating Angles subtended at the centre by an arc and one subtended at the circumference |
KLB Maths Bk2 Pg. 264-278
|
|
13 | 1 |
Angle Properties of a Circle
|
Angles subtended by the diameter at the circumference
Cyclic quadrilateral Cyclic quadrilateral |
By the end of the
lesson, the learner
should be able to:
state the angle in the semi-circle |
Discussions
Drawing circles Measuring radii/diameters/angles Identifying the parts of a circle |
Circles showing the
different parts |
KLB Maths Bk2 Pg. 264-278
|
|
13 | 2 |
Angle Properties of a Circle
|
Exterior angle property
Problem solving Problem solving |
By the end of the
lesson, the learner
should be able to:
apply the exterior angle property |
Discussions
Drawing circles Measuring radii/diameters/angles Identifying the parts of a circle |
Circles showing the
different parts different parts Past paper questions different parts Past paper questions |
KLB Maths Bk2 Pg. 264-278
|
|
13 | 3 |
Vectors
|
Definition and Representation of vectors
Equivalent vectors |
By the end of the
lesson, the learner
should be able to:
define a vector and a scalar, use vector notation and represent vectors. |
Writing position vectors
Adding/subtracting numbers Squaring and getting the square root of numbers |
1x2 matrices
Graph papers Square boards Ruler |
KLB Maths Bk2 Pg. 284-285
|
|
13 | 4 |
Vectors
|
Addition of vectors
Multiplication of vectors Position vectors |
By the end of the
lesson, the learner
should be able to:
add vectors |
Writing position vectors
Adding/subtracting numbers Squaring and getting the square root of numbers |
1x2 matrices
Graph papers Square boards Ruler |
KLB Maths Bk2 Pg. 286-289
|
|
13 | 5 |
Vectors
|
Column vector
Magnitude of a vector Mid - point Translation vector |
By the end of the
lesson, the learner
should be able to:
write a vector as a column vector |
Writing position vectors
Adding/subtracting numbers Squaring and getting the square root of numbers |
1x2 matrices
Graph papers Square boards Ruler |
KLB Maths Bk2 Pg. 296-297
|
Your Name Comes Here