If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 |
OPENER EXAMINATIONS |
|||||||
2 | 1 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Alkanols (Alcohols).
|
By the end of the
lesson, the learner
should be able to:
Identify the functional group of alkanols. Explain formation of alkanol molecules. |
Q/A: review alkanes, alkenes and alkynes. Teacher exposes new concepts and links them with already known concepts. |
student book
|
K.L.B. BK IV
Page 205 |
|
2 | 2 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Nomenclature of alkanols.
|
By the end of the
lesson, the learner
should be able to:
Name and draw the structure of simple alkanols. |
Guided discovery of naming system for alkanols.
Draw and name structures of alkanols. |
student book
|
K.L.B. BK IV
Pages 206-8 |
|
2 | 3 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Isomerism in alkanols.
|
By the end of the
lesson, the learner
should be able to:
Describe positional and chain isomerism in alkanols. Explain formation of primary and secondary alkanols. |
Q/A: review the terms positional and chain isomerism.
Brief discussion on isomerism. Oral exercise: naming given organic compounds. Written exercise: writing structural formulae for isomers of organic compounds of a given molecular formula. |
student book
|
K.L.B. BK IV
Pages 208-10 |
|
2 | 4-5 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Preparation of ethanol in the lab.
|
By the end of the
lesson, the learner
should be able to:
Describe preparation of ethanol in the laboratory. |
Group experiments / teacher demonstration.
Discuss the fermentation process. |
Calcium hydroxide solution, sugar solution, yeast.
|
K.L.B. BK IV
Pages 210-11 |
|
3 | 1 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Physical properties of alkanols.
|
By the end of the
lesson, the learner
should be able to:
Explain the physical properties of alkanols. |
Comparative evaluation of physical properties of alkanols.
Q/A & discussion on variation in physical properties of alkanols. |
student book
|
K.L.B. BK IV
Page 212 |
|
3 | 2 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Chemical properties of alkanols.
|
By the end of the
lesson, the learner
should be able to:
Describe some chemical reactions of alkanols. |
Group experiments/ teacher demonstration to investigate combustion of ethanol and its reaction with metals.
Write corresponding chemical equations. |
student book
|
K.L.B. BK IV
Pages 213-5 |
|
3 | 3 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Chemical properties of alkanols.
|
By the end of the
lesson, the learner
should be able to:
Describe some chemical reactions of alkanols. |
Group experiments/ teacher demonstration to investigate combustion of ethanol and its reaction with metals.
Write corresponding chemical equations. |
student book
|
K.L.B. BK IV
Pages 213-5 |
|
3 | 4-5 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Esters and esterification.
Oxidation of ethanol. Uses of alkanols. |
By the end of the
lesson, the learner
should be able to:
Explain formation of esters. Describe the esterification process. Explain oxidation of ethanol by an oxidizing agent. State uses of alkanols. Explain the effects of alcohol on human health |
Teacher exposes and explains new concepts.
Assignment. Q/A: review redox reactions, oxidizing and reducing agents. Brief discussion: oxidation of ethanol using potassium (VII) manganate or potassium (VI) dichromate. Write corresponding chemical equations. Open discussion. |
student book
|
K.L.B. BK IV
Pages 215-6 K.L.B. BK IV Pages 216-8 |
|
4 | 1 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Alkanoic (Carboxylic Acids).
|
By the end of the
lesson, the learner
should be able to:
Identify the functional group of alkanoic (carboxylic) acids. Explain formation of alkanoic acid molecule. |
Q/A: review functional group of alkanols.
Brief discussion. |
student book
|
K.L.B. BK IV
Page 219 |
|
4 | 2 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Alkanoic (Carboxylic Acids).
|
By the end of the
lesson, the learner
should be able to:
Identify the functional group of alkanoic (carboxylic) acids. Explain formation of alkanoic acid molecule. |
Q/A: review functional group of alkanols.
Brief discussion. |
student book
|
K.L.B. BK IV
Page 219 |
|
4 | 3 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Nomenclature of alkanoic acids.
|
By the end of the
lesson, the learner
should be able to:
Name and draw the structure of simple alkanoic acids. |
Guided discovery of the naming system for alkanoic acids.
|
Chart: homologous series of alkanoic acids.
|
K.L.B. BK IV
Pages 219-221 |
|
4 | 4-5 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Lab preparation of ethanoic acid.
|
By the end of the
lesson, the learner
should be able to:
Describe laboratory preparation of ethanoic acid. |
Teacher demonstration: prepare ethanoic acid in the lab.
Brief discussion on preparation of ethanoic acid. |
Concentrated H2SO4, potassium manganate
(VII) Crystals, water bath. |
K.L.B. BK IV
Pages 221-223 |
|
5 | 1 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Physical properties of alkanoic acids.
|
By the end of the
lesson, the learner
should be able to:
Explain some physical properties of alkanoic acids. |
Compare physical properties of some alkanoic acids.
Discuss the difference in physical properties among alkanoic acids. |
student book
|
K.L.B. BK IV
Pages 223-4 |
|
5 | 2 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Chemical properties of alkanoic acids.
|
By the end of the
lesson, the learner
should be able to:
Explain some chemical properties of alkanoic acids. |
Group experiment: investigate some chemical properties of ethanoic acid.
Carry out tests and record observations in a table. |
Ethanoic acid, universal indicator, sodium carbonate, magnesium strip, ethanol, conc. H2SO4 and sodium hydroxide.
|
K.L.B. BK IV
Pages 224-5 |
|
5 | 3 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Chemical properties &
Uses of alkanoic acids.
|
By the end of the
lesson, the learner
should be able to:
Write equations for chemical reactions involving acids. State uses of alkanoic acids. |
Review and discuss the observations above.
Write corresponding chemical equations. Teacher elucidates uses of alkanoic acids. |
student book
|
K.L.B. BK IV
Pages 225-7 |
|
5 | 4-5 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Chemical properties &
Uses of alkanoic acids.
Soap preparation in the lab. |
By the end of the
lesson, the learner
should be able to:
Write equations for chemical reactions involving acids. State uses of alkanoic acids. Describe soap preparation in the lab. |
Review and discuss the observations above.
Write corresponding chemical equations. Teacher elucidates uses of alkanoic acids. Group experiments, Answer questions based on the experiments already carried out. |
student book
|
K.L.B. BK IV
Pages 225-7 K.L.B. BK IV Pages 227-230 |
|
6 | 1 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Cleaning action of soap.
|
By the end of the
lesson, the learner
should be able to:
Describe the nature of a soap molecule. Explain the mode of action in cleaning. |
Expository and descriptive approaches.
Answer oral questions. |
student book
|
K.L.B. BK IV
Pages 230-232 |
|
6 | 2 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Effects of hard / soft water on soap.
|
By the end of the
lesson, the learner
should be able to:
Explain the effects of hard/ soft water on soap. |
Group experiments: form soap lather in different solutions.
Deduce the effects of hard/ soft water on soap. |
Distilled water, tap water, rainwater, sodium chloride solution.
Calcium nitrate, Zinc Sulphate, etc. |
K.L.B. BK IV
Pages 232-235 |
|
6 | 3 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Soapless detergents.
|
By the end of the
lesson, the learner
should be able to:
Prepare soapless detergents in the lab. State merits of soapless detergents over soaps. |
Teacher demonsration.
Brief discussion. |
student book
|
K.L.B. BK IV
Pages 235-238 |
|
6 | 4-5 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
ELECTRO-CHEMISTRY. |
Polymers and polymerization.
Redox reactions. |
By the end of the
lesson, the learner
should be able to:
Explain the concepts additional and condensation polymerization as methods of making synthetic polymers. Identify some products of polymerization. State merits and demerits of synthetic polymers over natural materials. Describe redox reactions in terms of gain / loss of electrons. Identify oxidizing / reducing agents involved in redox reactions. |
Teacher exposes and explains new concepts. Detailed discussion. Assignment. Q/A: review cations, anions and charges. Write down ionic half equations and identify reducing / oxidizing agents. |
student book
|
K.L.B. BK IV
Pages 238-242 K.L.B. BK IV Pages 108-9 |
|
7 | 1 |
ELECTRO-CHEMISTRY.
|
Oxidizing Numbers.
|
By the end of the
lesson, the learner
should be able to:
Outline rules of assigning oxidation numbers. Determine the oxidation numbers of an element in a given compound. Explain the use of oxidation numbers in naming compounds. |
Exposition and giving specific examples.
Work out oxidizing number of elements in given compounds. Copy and complete a table of compounds containing elements that more than one oxidation number. |
student book
|
K.L.B. BK IV
Pages 109-116 |
|
7 | 2 |
ELECTRO-CHEMISTRY.
|
Oxidizing Numbers.
|
By the end of the
lesson, the learner
should be able to:
Outline rules of assigning oxidation numbers. Determine the oxidation numbers of an element in a given compound. Explain the use of oxidation numbers in naming compounds. |
Exposition and giving specific examples.
Work out oxidizing number of elements in given compounds. Copy and complete a table of compounds containing elements that more than one oxidation number. |
student book
|
K.L.B. BK IV
Pages 109-116 |
|
7 | 3 |
ELECTRO-CHEMISTRY.
|
Displacement reactions.
|
By the end of the
lesson, the learner
should be able to:
Explain change of oxidation numbers during redox / displacement reactions. Arrange elements in order of their reducing power. |
Class standard experiments: reacting metals with solutions containing metal ions.
Taking note of reactions and those that do not take place; and tabulating the results. |
Metals: Ca, Na, Zn, Fe, Pb, and Cu.
Solutions containing Ca2+, Mg2+, Zn2+, Fe2+. |
K.L.B. BK IV
Pages 116-120 |
|
7 | 4-5 |
ELECTRO-CHEMISTRY.
|
The oxidizing power of an element.
|
By the end of the
lesson, the learner
should be able to:
Arrange elements in order of their oxidizing power. |
Teacher demonstration / group expts:
Adding halogens to solutions containing halide ions. Tabulate the results. Discuss the results and arrive at the oxidizing power series of halogens. |
Halogens:
Cl2 (g), Br2 (l), I2 (s). Halides: KCl, KBr, KI. |
K.L.B. BK IV
Pages 120-122 |
|
8 | 1 |
ELECTRO-CHEMISTRY.
|
Cell diagrams.
|
By the end of the
lesson, the learner
should be able to:
Define the terms electrode, potential and e.m.f. of an electrochemical cell. Describe components of a cell diagram. Draw cell diagrams using correct notations. |
Teacher demonstration: Zinc/ copper cell.
Q/A & discussion: changes in oxidation numbers. Exposition: cell diagram and deducing the direction of electron flow. |
Zinc/ copper cell.
|
K.L.B. BK IV
Pages 123-128 |
|
8 | 2 |
ELECTRO-CHEMISTRY.
|
Standard Electrode Potentials.
|
By the end of the
lesson, the learner
should be able to:
Identify standard conditions for measuring electrode potentials. Define the term standard electrode potential of a cell. Write half reactions of electrochemical cells. |
Descriptive and expository approaches: teacher exposes new concepts.
|
student book
|
K.L.B. BK IV
Pages 129-131 |
|
8 | 3 |
ELECTRO-CHEMISTRY.
|
Standard electrode potential series.
|
By the end of the
lesson, the learner
should be able to:
Recall the order of standard electrode potentials. Compare oxidizing and reducing powers of substances. |
Q/A: review reactivity series, oxidizing agent, reducing agent.
Exposition: the order of standard electrode potentials. Discussion: oxidizing and reducing powers of substances. |
student book
|
K.L.B. BK IV
Pages 131-133 |
|
8 | 4-5 |
ELECTRO-CHEMISTRY.
|
Standard electrode potential series.
Emf of a cell. |
By the end of the
lesson, the learner
should be able to:
Recall the order of standard electrode potentials. Compare oxidizing and reducing powers of substances. Calculate emf of a cell using standard electrodes potentials. |
Q/A: review reactivity series, oxidizing agent, reducing agent.
Exposition: the order of standard electrode potentials. Discussion: oxidizing and reducing powers of substances. Q/A: review half-cells. Worked examples; supervised practice. Assignment. |
student book
|
K.L.B. BK IV
Pages 131-133 K.L.B. BK IV Pages 133-136 |
|
9 |
MIDTERM EXAMINATIONS AND BREAK |
|||||||
10 | 1 |
ELECTRO-CHEMISTRY.
|
Possibility of a reaction to take place.
|
By the end of the
lesson, the learner
should be able to:
Predict whether a reaction will take place or not using standard electrode potentials. |
Worked examples.
Oral exercise. Assignment. |
student book
|
K.L.B. BK IV
Pages 136-137 |
|
10 | 2 |
ELECTRO-CHEMISTRY.
|
Primary and secondary chemical cells.
|
By the end of the
lesson, the learner
should be able to:
Describe the functioning of primary and secondary chemical cells. |
Exposition of new concepts and brief discussion
Assignment. |
student book
|
K.L.B. BK IV
Pages 138-141 |
|
10 | 3 |
ELECTRO-CHEMISTRY.
|
Electrolysis of dilute NaCl.
|
By the end of the
lesson, the learner
should be able to:
Define the term electrolysis. Explain the concept of preferential discharge of ions. |
Teacher demonstration: electrolysis of dilute sodium chloride with carbon electrodes.
Test for gases collected. Write down equations of reactions at each electrode. Discussion: preferential discharge of ions at electrodes. |
Dilute sodium chloride voltameter.
|
K.L.B. BK IV
Pages 141-144 |
|
10 | 4-5 |
ELECTRO-CHEMISTRY.
|
Electrolysis of dilute NaCl.
Electrolysis of brine. |
By the end of the
lesson, the learner
should be able to:
Define the term electrolysis. Explain the concept of preferential discharge of ions. Identify products of electrolysis of brine. |
Teacher demonstration: electrolysis of dilute sodium chloride with carbon electrodes.
Test for gases collected. Write down equations of reactions at each electrode. Discussion: preferential discharge of ions at electrodes. Teacher demonstration/ group experiments. Test for the products of electrolysis. Write relevant equations. |
Dilute sodium chloride voltameter.
Brine voltameter. |
K.L.B. BK IV
Pages 141-144 K.L.B. BK IV Pages 144-146 |
|
11 | 1 |
ELECTRO-CHEMISTRY.
|
Electrolysis of dilute sulphuric (VI) acid.
|
By the end of the
lesson, the learner
should be able to:
Identify products of electrolysis of dilute sulphuric (VI) acid. |
Teacher demonstration/ group experiments.
Test for the products of electrolysis. Write relevant equations. |
Sulphuric acid voltameter.
|
K.L.B. BK IV
Pages 146-148 |
|
11 | 2 |
ELECTRO-CHEMISTRY.
|
Factors affecting electrolysis.
|
By the end of the
lesson, the learner
should be able to:
Explain factors that affect electrolytic products discharged at electrodes. |
Q/A: review the electrochemical series of elements.
Teacher writes down order of ease of discharge of ions at electrodes. Discussion: other factors; giving suitable examples. |
student book
|
K.L.B. BK IV
Pages 153-5 |
|
11 | 3 |
ELECTRO-CHEMISTRY.
|
Application of electrolysis.
|
By the end of the
lesson, the learner
should be able to:
Describe some applications of electrolysis. |
Probing questions and brief discussion on applications of electrolysis.
Practical assignment on electrolysis: electroplating an iron nail with a suitable metal. |
Suitable voltameter.
|
K.L.B. BK IV
Pages 155-7 |
|
11 | 4-5 |
ELECTRO-CHEMISTRY.
|
Application of electrolysis.
Faraday?s law of electrolysis. |
By the end of the
lesson, the learner
should be able to:
Describe some applications of electrolysis. State Faraday?s law of electrolysis. Solve problems related to Faraday?s law of electrolysis. |
Probing questions and brief discussion on applications of electrolysis.
Practical assignment on electrolysis: electroplating an iron nail with a suitable metal. Discuss above results, leading to Faraday?s law of electrolysis. Worked examples. Assignment. |
Suitable voltameter.
Weighing balance, stop watch, copper sulphate voltameter. |
K.L.B. BK IV
Pages 155-7 K.L.B. BK IV Pages 161-4 |
|
12 | 1 |
RADIOACTIVITY
|
Definition of radioactivity.
|
By the end of the
lesson, the learner
should be able to:
Define radioactivity, a nuclide and radioactive decay. Differentiate between natural and artificial radioactivity. |
Q/A: Review the atomic structure. Exposition: symbolic representation of an atom / nucleus. Exposition: meaning of radioactivity and radioactive decay. Discussion: artificial and natural radioactivity. |
student book
|
K.L.B. BK IV
Pages 249-251 |
|
12 | 2 |
RADIOACTIVITY
|
Alpha particles.
|
By the end of the
lesson, the learner
should be able to:
State properties of alpha particles. Describe methods of detecting alpha particles. |
Q/A: position of helium in the periodic table.
Expository approach: |
student book
|
K.L.B. BK IV
Pages 251-253 |
|
12 | 3 |
RADIOACTIVITY
|
Equations involving alpha particles.
Beta particles. Gamma rays. |
By the end of the
lesson, the learner
should be able to:
Write down and balance equations involving alpha particles. |
Q/A: Review atomic and mass numbers.
Examples of balanced equations. Supervised practice. |
student book
|
K.L.B. BK IV
Page 257 |
|
12 | 4-5 |
RADIOACTIVITY
|
Radioactive
Half-Life.
Radioactive decay curve. Nuclear fusion and nuclear fission. Applications of radioactivity. |
By the end of the
lesson, the learner
should be able to:
Define the term radioactive half-life. Solve problems relating to half ?life Differentiate between nuclear fusion and nuclear fission. Describe applications of radioactivity. |
Teacher demonstration: Dice experiment.
Exposition of the term half-life. Worked examples. Written exercise Exposition of new concepts accompanied by nuclear equations. Brief discussion: Carbon dating, detecting leakage, medication, agriculture, industry; effect of static charges, etc. |
Dice.
Graph papers. student book |
K.L.B. BK IV
Pages 253-4 K.L.B. BK IV Pages 259-260 |
|
13-14 |
END-TERM EXAMINATIONS |
Your Name Comes Here