Home






SCHEME OF WORK
Chemistry
Form 4 2025
TERM II
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1

REPORTING/REVISION

1-2

OPENER EXAMINATION

2 3-4
ELECTRO-CHEMISTRY.
Primary and secondary chemical cells.
By the end of the lesson, the learner should be able to:
Describe the functioning of primary and secondary chemical cells.
Exposition of new concepts and brief discussion
Assignment.


student book
K.L.B. BK IV
Pages 138-141
2 5
ELECTRO-CHEMISTRY.
Primary and secondary chemical cells.
By the end of the lesson, the learner should be able to:
Describe the functioning of primary and secondary chemical cells.
Exposition of new concepts and brief discussion
Assignment.


student book
K.L.B. BK IV
Pages 138-141
3 1
ELECTRO-CHEMISTRY.
Electrolysis of dilute NaCl.
By the end of the lesson, the learner should be able to:
Define the term electrolysis.
Explain the concept of preferential discharge of ions.
Teacher demonstration: electrolysis of dilute sodium chloride with carbon electrodes.
Test for gases collected.
Write down equations of reactions at each electrode.
Discussion: preferential discharge of ions at electrodes.
Dilute sodium chloride voltameter.
K.L.B. BK IV
Pages 141-144
3 2
ELECTRO-CHEMISTRY.
Electrolysis of dilute NaCl.
By the end of the lesson, the learner should be able to:
Define the term electrolysis.
Explain the concept of preferential discharge of ions.
Teacher demonstration: electrolysis of dilute sodium chloride with carbon electrodes.
Test for gases collected.
Write down equations of reactions at each electrode.
Discussion: preferential discharge of ions at electrodes.
Dilute sodium chloride voltameter.
K.L.B. BK IV
Pages 141-144
3 3-4
ELECTRO-CHEMISTRY.
Electrolysis of dilute NaCl.
By the end of the lesson, the learner should be able to:
Define the term electrolysis.
Explain the concept of preferential discharge of ions.
Teacher demonstration: electrolysis of dilute sodium chloride with carbon electrodes.
Test for gases collected.
Write down equations of reactions at each electrode.
Discussion: preferential discharge of ions at electrodes.
Dilute sodium chloride voltameter.
K.L.B. BK IV
Pages 141-144
3 5
ELECTRO-CHEMISTRY.
Electrolysis of brine.
By the end of the lesson, the learner should be able to:
Identify products of electrolysis of brine.
Teacher demonstration/ group experiments.
Test for the products of electrolysis.
Write relevant equations.


Brine voltameter.
K.L.B. BK IV
Pages 144-146
4 1
ELECTRO-CHEMISTRY.
Electrolysis of dilute sulphuric (VI) acid.
By the end of the lesson, the learner should be able to:
Identify products of electrolysis of dilute sulphuric (VI) acid.
Teacher demonstration/ group experiments.
Test for the products of electrolysis.
Write relevant equations.
Sulphuric acid voltameter.
K.L.B. BK IV
Pages 146-148
4 2
ELECTRO-CHEMISTRY.
Electrolysis of dilute sulphuric (VI) acid.
By the end of the lesson, the learner should be able to:
Identify products of electrolysis of dilute sulphuric (VI) acid.
Teacher demonstration/ group experiments.
Test for the products of electrolysis.
Write relevant equations.
Sulphuric acid voltameter.
K.L.B. BK IV
Pages 146-148
4 3-4
ELECTRO-CHEMISTRY.
Electrolysis of dilute sulphuric (VI) acid.
By the end of the lesson, the learner should be able to:
Identify products of electrolysis of dilute sulphuric (VI) acid.
Teacher demonstration/ group experiments.
Test for the products of electrolysis.
Write relevant equations.
Sulphuric acid voltameter.
K.L.B. BK IV
Pages 146-148
4 5
ELECTRO-CHEMISTRY.
Electrolysis of dilute sulphuric (VI) acid.
By the end of the lesson, the learner should be able to:
Identify products of electrolysis of dilute sulphuric (VI) acid.
Teacher demonstration/ group experiments.
Test for the products of electrolysis.
Write relevant equations.
Sulphuric acid voltameter.
K.L.B. BK IV
Pages 146-148
5 1
ELECTRO-CHEMISTRY.
Factors affecting electrolysis.
By the end of the lesson, the learner should be able to:
Explain factors that affect electrolytic products discharged at electrodes.
Q/A: review the electrochemical series of elements.
Teacher writes down order of ease of discharge of ions at electrodes.
Discussion: other factors; giving suitable examples.
student book
K.L.B. BK IV
Pages 153-5
5 2
ELECTRO-CHEMISTRY.
Factors affecting electrolysis.
By the end of the lesson, the learner should be able to:
Explain factors that affect electrolytic products discharged at electrodes.
Q/A: review the electrochemical series of elements.
Teacher writes down order of ease of discharge of ions at electrodes.
Discussion: other factors; giving suitable examples.
student book
K.L.B. BK IV
Pages 153-5
5 3-4
ELECTRO-CHEMISTRY.
Factors affecting electrolysis.
Application of electrolysis.
By the end of the lesson, the learner should be able to:
Explain factors that affect electrolytic products discharged at electrodes.
Describe some applications of electrolysis.
Q/A: review the electrochemical series of elements.
Teacher writes down order of ease of discharge of ions at electrodes.
Discussion: other factors; giving suitable examples.

Probing questions and brief discussion on applications of electrolysis.
Practical assignment on electrolysis: electroplating an iron nail with a suitable metal.
student book
Suitable voltameter.
K.L.B. BK IV
Pages 153-5
K.L.B. BK IV
Pages 155-7
5 5
ELECTRO-CHEMISTRY.
Application of electrolysis.
By the end of the lesson, the learner should be able to:
Describe some applications of electrolysis.
Probing questions and brief discussion on applications of electrolysis.
Practical assignment on electrolysis: electroplating an iron nail with a suitable metal.
Suitable voltameter.
K.L.B. BK IV
Pages 155-7
6 1
ELECTRO-CHEMISTRY.
Faraday?s law of electrolysis.
By the end of the lesson, the learner should be able to:
State Faraday?s law of electrolysis.
Solve problems related to Faraday?s law of electrolysis.


Discuss above results, leading to Faraday?s law of electrolysis.

Worked examples.

Assignment.
Weighing balance, stop watch, copper sulphate voltameter.
K.L.B. BK IV
Pages 161-4
6 2
ELECTRO-CHEMISTRY.
Faraday?s law of electrolysis.
By the end of the lesson, the learner should be able to:
State Faraday?s law of electrolysis.
Solve problems related to Faraday?s law of electrolysis.


Discuss above results, leading to Faraday?s law of electrolysis.

Worked examples.

Assignment.
Weighing balance, stop watch, copper sulphate voltameter.
K.L.B. BK IV
Pages 161-4
6 3-4
ELECTRO-CHEMISTRY.
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Faraday?s law of electrolysis.
Alkanols (Alcohols).
By the end of the lesson, the learner should be able to:
State Faraday?s law of electrolysis.
Solve problems related to Faraday?s law of electrolysis.






Identify the functional group of alkanols.

Explain formation of alkanol molecules.

Discuss above results, leading to Faraday?s law of electrolysis.

Worked examples.

Assignment.



Q/A: review alkanes, alkenes and alkynes.

Teacher exposes new concepts and links them with already known concepts.
Weighing balance, stop watch, copper sulphate voltameter.
student book
K.L.B. BK IV
Pages 161-4
K.L.B. BK IV
Page 205
6 5
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Alkanols (Alcohols).
By the end of the lesson, the learner should be able to:



Identify the functional group of alkanols.

Explain formation of alkanol molecules.




Q/A: review alkanes, alkenes and alkynes.

Teacher exposes new concepts and links them with already known concepts.
student book
K.L.B. BK IV
Page 205
7 1
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Nomenclature of alkanols.
By the end of the lesson, the learner should be able to:
Name and draw the structure of simple alkanols.
Guided discovery of naming system for alkanols.
Draw and name structures of alkanols.
student book
K.L.B. BK IV
Pages 206-8
7 2
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Nomenclature of alkanols.
By the end of the lesson, the learner should be able to:
Name and draw the structure of simple alkanols.
Guided discovery of naming system for alkanols.
Draw and name structures of alkanols.
student book
K.L.B. BK IV
Pages 206-8
7 3-4
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Nomenclature of alkanols.
By the end of the lesson, the learner should be able to:
Name and draw the structure of simple alkanols.
Guided discovery of naming system for alkanols.
Draw and name structures of alkanols.
student book
K.L.B. BK IV
Pages 206-8
7 5
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Isomerism in alkanols.
By the end of the lesson, the learner should be able to:
Describe positional and chain isomerism in alkanols.
Explain formation of primary and secondary alkanols.
Q/A: review the terms positional and chain isomerism.
Brief discussion on isomerism.
Oral exercise: naming given organic compounds.
Written exercise: writing structural formulae for isomers of organic compounds of a given molecular formula.
student book
K.L.B. BK IV
Pages 208-10
8 1
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Preparation of ethanol in the lab.
By the end of the lesson, the learner should be able to:
Describe preparation of ethanol in the laboratory.
Group experiments / teacher demonstration.

Discuss the fermentation process.
Calcium hydroxide solution, sugar solution, yeast.

K.L.B. BK IV
Pages 210-11
8 2
RADIOACTIVITY
Definition of radioactivity.
By the end of the lesson, the learner should be able to:


Define radioactivity, a nuclide and radioactive decay.
Differentiate between natural and artificial radioactivity.



Q/A: Review the atomic structure.
Exposition: symbolic representation of an atom / nucleus.
Exposition: meaning of radioactivity and radioactive decay.
Discussion: artificial and natural radioactivity.

student book
K.L.B. BK IV
Pages 249-251
8 3
RADIOACTIVITY
Definition of radioactivity.
By the end of the lesson, the learner should be able to:


Define radioactivity, a nuclide and radioactive decay.
Differentiate between natural and artificial radioactivity.



Q/A: Review the atomic structure.
Exposition: symbolic representation of an atom / nucleus.
Exposition: meaning of radioactivity and radioactive decay.
Discussion: artificial and natural radioactivity.

student book
K.L.B. BK IV
Pages 249-251
8 2-4
RADIOACTIVITY
Definition of radioactivity.
By the end of the lesson, the learner should be able to:


Define radioactivity, a nuclide and radioactive decay.
Differentiate between natural and artificial radioactivity.



Q/A: Review the atomic structure.
Exposition: symbolic representation of an atom / nucleus.
Exposition: meaning of radioactivity and radioactive decay.
Discussion: artificial and natural radioactivity.

student book
K.L.B. BK IV
Pages 249-251
8-9

MID TERM EXAMINATION

9

MID TERM BREAK

10 1
RADIOACTIVITY
Alpha particles.
By the end of the lesson, the learner should be able to:
State properties of alpha particles.
Describe methods of detecting alpha particles.
Q/A: position of helium in the periodic table.

Expository approach:

student book
K.L.B. BK IV
Pages 251-253
10 2
RADIOACTIVITY
Alpha particles.
By the end of the lesson, the learner should be able to:
State properties of alpha particles.
Describe methods of detecting alpha particles.
Q/A: position of helium in the periodic table.

Expository approach:

student book
K.L.B. BK IV
Pages 251-253
10 3-4
RADIOACTIVITY
Alpha particles.
Equations involving alpha particles.
By the end of the lesson, the learner should be able to:
State properties of alpha particles.
Describe methods of detecting alpha particles.

Write down and balance equations involving alpha particles.
Q/A: position of helium in the periodic table.

Expository approach:


Q/A: Review atomic and mass numbers.
Examples of balanced equations.
Supervised practice.
student book
K.L.B. BK IV
Pages 251-253
K.L.B. BK IV
Page 257
10 5
RADIOACTIVITY
Beta particles. Gamma rays.
By the end of the lesson, the learner should be able to:
State properties of beta particles.
Define isotopes and isobars.
Write down balanced equations involving both alpha and beta particles.
State properties of gamma rays.
Q/A: Review isotopes.
Expository approach: teacher briefly exposes new concepts.
Examples of equations.
Supervised practice.

Assignment.
student book
K.L.B. BK IV
Pages 251-253
11 1
RADIOACTIVITY
Radioactive Half-Life.
By the end of the lesson, the learner should be able to:
Define the term radioactive half-life. Solve problems relating to half ?life
Teacher demonstration: Dice experiment.
Exposition of the term half-life.
Worked examples.
Written exercise
Dice.
K.L.B. BK IV
Pages 253-4
11 2
RADIOACTIVITY
Radioactive Half-Life.
By the end of the lesson, the learner should be able to:
Define the term radioactive half-life. Solve problems relating to half ?life
Teacher demonstration: Dice experiment.
Exposition of the term half-life.
Worked examples.
Written exercise
Dice.
K.L.B. BK IV
Pages 253-4
11 3-4
RADIOACTIVITY
Radioactive decay curve.
By the end of the lesson, the learner should be able to:
Plot a radioactive decay curve to deduce the
half ?life from the curve.
Drawing a radioactive decay curve inferring the half-life of the sample from the graph.
Graph papers.
K.L.B. BK IV
Pages 254-5
11 5
RADIOACTIVITY
Nuclear fusion and nuclear fission. Applications of radioactivity.
By the end of the lesson, the learner should be able to:
Differentiate between nuclear fusion and nuclear fission.
Describe applications of radioactivity.
Exposition of new concepts accompanied by nuclear equations.
Brief discussion: Carbon dating, detecting leakage, medication, agriculture, industry; effect of static charges, etc.
student book
K.L.B. BK IV
Pages 259-260
13-14

END OF TERM EXAMINATION


Your Name Comes Here


Download

Feedback