If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 |
Opening and revision of end term exam |
|||||||
2 | 1 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Endothermic and Exothermic Reactions.
|
By the end of the
lesson, the learner
should be able to:
To differentiate between endothermic & exothermic reactions. |
Investigate temperature changes in solution formation. Obtain changes in temperature when ammonium nitrate and sodium hydroxide are dissolved in water, one at a time. |
Ammonium nitrate, Sodium hydroxide, thermometers. |
K.L.B. BK IV
Pages 32-33 |
|
2 | 2 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Energy level diagrams.
|
By the end of the
lesson, the learner
should be able to:
Represent endothermic reactions with exothermic reactions with energy level diagrams. |
Probing questions on relative energies of reactants and products in endothermic and exothermic and endothermic reactions.
|
student book
|
K.L.B. BK IV
Pages 33-35 |
|
2 | 3-4 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Enthalpy Notation.
Change of state.
CAT Molar heat of solution. |
By the end of the
lesson, the learner
should be able to:
Define the term enthalpy. Distinguish positive enthalpy change from negative enthalpy change. Determine the M.P/ B.P of a pure substance. Determine molar heat of solution of given substances. |
Q/A and brief discussion.
Class experiments: determine B.P of pure water/ M.P of naphthalene / ice. Use experimental results to plot temperature-time graphs. Explain the shape of the graphs. Q/A: review kinetic theory of matter. Apply the theory to explain the shape of the graph, and nature of bonding in substances. Dissolve known masses of ammonia nitrate / sodium hydroxide in known volumes of water. Determine temperature changes. Calculate molar heat of solution. Supervised practice. |
Ice, naphthalene, thermometers, graph papers.
Ammonia nitrate / sodium hydroxide, thermometers. |
K.L.B. BK IV
Pages 35-39 K.L.B. BK IV Pages 40-41 |
|
2 | 5 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Molar heat of solution.
|
By the end of the
lesson, the learner
should be able to:
Determine molar heat of solution of given substances. |
Dissolve known masses of ammonia nitrate / sodium hydroxide in known volumes of water.
Determine temperature changes. Calculate molar heat of solution. Supervised practice. |
Ammonia nitrate / sodium hydroxide, thermometers.
|
K.L.B. BK IV
Pages 40-41 |
|
3 | 1 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Molar heat of solution of H2SO4.
|
By the end of the
lesson, the learner
should be able to:
Determine molar heat of solution of H2SO4. |
Dissolve some known volume of conc. H2SO4 in a given volume of water.
Note the change in temperature. Work out the molar heat of solution of H2SO4. |
Conc. H2SO4, thermometers.
|
K.L.B. BK IV
Pages 42-45 |
|
3 | 2 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Enthalpy of combustion.
Enthalpy of combustion.
|
By the end of the
lesson, the learner
should be able to:
Define the term enthalpy of combustion. Determine the enthalpy of combustion of ethanol. Explain why actual heats of combustion are usually lower than the theoretical values. |
Group experiments / teacher demonstration.
Obtain and record results. Work out calculations. |
Ethanol, distilled water, thermometer, clear wick, tripod stand and wire gauze.
|
K.L.B. BK IV
Pages 45-48 |
|
3 | 3-4 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Molar heat of displacement of ions.
Molar heat of solution of neutralization. |
By the end of the
lesson, the learner
should be able to:
Define the term molar heat of solution of displacement of ions. Determine the molar heat of solution of displacement of ions. Define the term neutralization. Determine the molar heat of neutralization of HCl with NaOH. |
Group experiments/ teacher demonstration.
Note steady temperature of solutions formed when zinc/ iron / magnesium reacts with copper sulphate solution. Work out the molar heat of displacement of a substance from a solution of its ions. Class experiments: Neutralize 2M HCl of known volume with a determined volume of 1M / 2M sodium hydroxide. Note highest temperature of the solution. Work out the molar heat of neutralization. Solve other related problems. Assignment. |
Zinc, iron, magnesium, copper sulphate solution.
2M HCl of known volume, 1M / 2M sodium hydroxide. |
K.L.B. BK IV
Pages 48-50 K.L.B. BK IV Pages 50-53 |
|
3 | 5 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Standard enthalpy changes.
|
By the end of the
lesson, the learner
should be able to:
Define the term standard enthalpy change. Denote standard enthalpy change with the correct notation. |
Exposition & brief discussion.
|
student book
|
K.L.B. BK IV
Pages 54-56 |
|
4 | 1 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Hess?s Law.
|
By the end of the
lesson, the learner
should be able to:
State Hess?s law. Solve problems related to Hess?s law. |
Detailed discussion & guided discovery of the law.
Illustrations of energy cycles and energy levels leading to Hess?s law. Worked examples. Supervised practice Written assignment. |
student book
|
K.L.B. BK IV
Pages 56-57 |
|
4 | 2 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Heat of solution hydration energy and lattice energy.
|
By the end of the
lesson, the learner
should be able to:
Define the terms lattice energy and hydration energy. Explain the relationship between heat of solution, hydration energy. Solve related problems. |
Exposition of new concepts.
Guided discovery of the relationship between heat solution hydration energy and lattice energy. Worked examples. Assignment. |
student book
|
K.L.B. BK IV
Pages 60-64 |
|
4 | 3-4 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES. RATES OF REACTION & REVERSIBLE REACTIONS. |
Heat values of fuels.
Environmental effects of fuels. Effect of temperature of reactants on rate of reaction. |
By the end of the
lesson, the learner
should be able to:
Define the term fuel. Describe energy changes when a fuel undergoes combustion. Outline factors considered when choosing a suitable fuel. Outline some environmental effects of fuels. Identify measures taken to reduce environmental pollution. |
Probing questions and brief discussion.
Q/A & open discussion. |
student book
student book Sodium thiosulphate heated at different temperatures, dilute HCl, stopwatches. Graph papers. |
K.L.B. BK IV
Pages 64-66 K.L.B. BK IV Pages 67-68 |
|
4 | 5 |
RATES OF REACTION & REVERSIBLE REACTIONS.
|
Effect of change in surface area of reactants on the rate of a reaction.
|
By the end of the
lesson, the learner
should be able to:
Explain the effect of change in surface area on the rate of a reaction. |
Group experiment/ teacher demonstration.
Compare reactions of marble chips with dilute HCl and that of marble chips powder with equally diluted HCl. Collect evolved gas in each case. Teacher asks probing questions related to the observations made. |
Marble chips, marble chips powder, syringes, conical flasks with stoppers, 1M HCl.
|
K.L.B. BK IV
Pages 83-85 |
|
5 | 1 |
RATES OF REACTION & REVERSIBLE REACTIONS.
|
Effect of a suitable catalyst on the rate of a reaction
|
By the end of the
lesson, the learner
should be able to:
Explain effects of a suitable catalyst on the rate of a reaction. |
Teacher demonstration: preparation and collection of oxygen gas without using a catalyst, then using manganese (IV) oxide as a catalyst.
Explain the results in terms of activation energy. |
Hydrogen peroxide, manganese (IV) oxide.
|
K.L.B. BK IV
Pages 85-88 |
|
5 | 2 |
RATES OF REACTION & REVERSIBLE REACTIONS.
|
Effect of light on rate of specific reactions.
Reversible reactions. |
By the end of the
lesson, the learner
should be able to:
Identify reactions that are affected by light. |
Teacher demonstration: decomposition of silver bromide in the presence of light.
Mention other examples of reactions affected by light. |
Silver bromide.
Crystals of hydrated copper (II) sulphate. |
K.L.B. BK IV
Pages 89-91 |
|
5 | 3-4 |
RATES OF REACTION & REVERSIBLE REACTIONS.
|
State of equilibrium in chemical reactions.
Le Chatelier?s Principle. |
By the end of the
lesson, the learner
should be able to:
Define the term equilibrium as used in reversible reactions. Write down equations of reversible reactions in a state of equilibrium. State Le Chatelier?s Principle. |
Brief discussion, giving examples of chemical equations for reversible reactions.
Investigate the effect of change of concentration of reactants on equilibrium. Add 2M sodium hydroxide in steps to bromine water. Make and record observations. Discuss the results leading to Le Chatelier?s Principle. |
student book
Add 2M sodium hydroxide, |
K.L.B. BK IV
Pages 94-95 K.L.B. BK IV Pages 95-97 |
|
5 | 5 |
RATES OF REACTION & REVERSIBLE REACTIONS.
|
Effect of change of pressure and temperature on equilibrium shift.
The Haber Process. |
By the end of the
lesson, the learner
should be able to:
Explain the effect of change of pressure & te,perature on equilibrium shift. |
Q/A: review kinetic theory of matter.
Q/A & discussion on effect of change of pressure / temperature on shifting of equilibrium; giving specific examples of chemical equations. Written assignment. |
student book
|
K.L.B. BK IV
Pages 97-101 |
|
6 | 1 |
RATES OF REACTION & REVERSIBLE REACTIONS.
|
The Contact Process.
|
By the end of the
lesson, the learner
should be able to:
Explain how change of temperature and pressure affect rate of manufacture of sulphur (VI) acid. |
Probing questions and brief discussion.
Assignment. |
student book
|
K.L.B. BK IV
Pages 103-104 |
|
6 | 2 |
ELECTRO-CHEMISTRY.
|
Redox reactions.
|
By the end of the
lesson, the learner
should be able to:
Describe redox reactions in terms of gain / loss of electrons. Identify oxidizing / reducing agents involved in redox reactions. |
Q/A: review cations, anions and charges. Write down ionic half equations and identify reducing / oxidizing agents. |
student book
|
K.L.B. BK IV
Pages 108-9 |
|
6 | 3-4 |
ELECTRO-CHEMISTRY.
|
Oxidizing Numbers.
Displacement reactions. The oxidizing power of an element. |
By the end of the
lesson, the learner
should be able to:
Outline rules of assigning oxidation numbers. Determine the oxidation numbers of an element in a given compound. Explain the use of oxidation numbers in naming compounds. Explain change of oxidation numbers during redox / displacement reactions. Arrange elements in order of their reducing power. |
Exposition and giving specific examples.
Work out oxidizing number of elements in given compounds. Copy and complete a table of compounds containing elements that more than one oxidation number. Class standard experiments: reacting metals with solutions containing metal ions. Taking note of reactions and those that do not take place; and tabulating the results. |
student book
Metals: Ca, Na, Zn, Fe, Pb, and Cu. Solutions containing Ca2+, Mg2+, Zn2+, Fe2+. Halogens: Cl2 (g), Br2 (l), I2 (s). Halides: KCl, KBr, KI. |
K.L.B. BK IV
Pages 109-116 K.L.B. BK IV Pages 116-120 |
|
6 | 5 |
ELECTRO-CHEMISTRY.
|
Cell diagrams.
|
By the end of the
lesson, the learner
should be able to:
Define the terms electrode, potential and e.m.f. of an electrochemical cell. Describe components of a cell diagram. Draw cell diagrams using correct notations. |
Teacher demonstration: Zinc/ copper cell.
Q/A & discussion: changes in oxidation numbers. Exposition: cell diagram and deducing the direction of electron flow. |
Zinc/ copper cell.
|
K.L.B. BK IV
Pages 123-128 |
|
7 | 1 |
ELECTRO-CHEMISTRY.
|
Standard Electrode Potentials.
|
By the end of the
lesson, the learner
should be able to:
Identify standard conditions for measuring electrode potentials. Define the term standard electrode potential of a cell. Write half reactions of electrochemical cells. |
Descriptive and expository approaches: teacher exposes new concepts.
|
student book
|
K.L.B. BK IV
Pages 129-131 |
|
7 | 2 |
ELECTRO-CHEMISTRY.
|
Standard electrode potential series.
|
By the end of the
lesson, the learner
should be able to:
Recall the order of standard electrode potentials. Compare oxidizing and reducing powers of substances. |
Q/A: review reactivity series, oxidizing agent, reducing agent.
Exposition: the order of standard electrode potentials. Discussion: oxidizing and reducing powers of substances. |
student book
|
K.L.B. BK IV
Pages 131-133 |
|
7 | 3-4 |
ELECTRO-CHEMISTRY.
|
Emf of a cell.
Possibility of a reaction to take place. Primary and secondary chemical cells. |
By the end of the
lesson, the learner
should be able to:
Calculate emf of a cell using standard electrodes potentials. Predict whether a reaction will take place or not using standard electrode potentials. |
Q/A: review half-cells.
Worked examples; supervised practice. Assignment. Worked examples. Oral exercise. Assignment. |
student book
|
K.L.B. BK IV
Pages 133-136 K.L.B. BK IV Pages 136-137 |
|
7 | 5 |
ELECTRO-CHEMISTRY.
|
Electrolysis of dilute NaCl.
|
By the end of the
lesson, the learner
should be able to:
Define the term electrolysis. Explain the concept of preferential discharge of ions. |
Teacher demonstration: electrolysis of dilute sodium chloride with carbon electrodes.
Test for gases collected. Write down equations of reactions at each electrode. Discussion: preferential discharge of ions at electrodes. |
Dilute sodium chloride voltameter.
|
K.L.B. BK IV
Pages 141-144 |
|
8 | 1 |
ELECTRO-CHEMISTRY.
|
Electrolysis of brine.
|
By the end of the
lesson, the learner
should be able to:
Identify products of electrolysis of brine. |
Teacher demonstration/ group experiments.
Test for the products of electrolysis. Write relevant equations. |
Brine voltameter.
|
K.L.B. BK IV
Pages 144-146 |
|
8 | 2 |
ELECTRO-CHEMISTRY.
|
Electrolysis of dilute sulphuric (VI) acid.
|
By the end of the
lesson, the learner
should be able to:
Identify products of electrolysis of dilute sulphuric (VI) acid. |
Teacher demonstration/ group experiments.
Test for the products of electrolysis. Write relevant equations. |
Sulphuric acid voltameter.
|
K.L.B. BK IV
Pages 146-148 |
|
8 | 3-4 |
ELECTRO-CHEMISTRY.
|
Factors affecting electrolysis.
Application of electrolysis. Faraday?s law of electrolysis. |
By the end of the
lesson, the learner
should be able to:
Explain factors that affect electrolytic products discharged at electrodes. State Faraday?s law of electrolysis. Solve problems related to Faraday?s law of electrolysis. |
Q/A: review the electrochemical series of elements.
Teacher writes down order of ease of discharge of ions at electrodes. Discussion: other factors; giving suitable examples. Discuss above results, leading to Faraday?s law of electrolysis. Worked examples. Assignment. |
student book
Suitable voltameter. Weighing balance, stop watch, copper sulphate voltameter. |
K.L.B. BK IV
Pages 153-5 K.L.B. BK IV Pages 161-4 |
|
8 | 5 |
METALS
|
Ores of some metals.
|
By the end of the
lesson, the learner
should be able to:
Name the chief ores of some metals. |
Exposition and brief discussion. |
|
K.L.B. BK IV
Pages 168-9 |
|
9 |
Midterm exam and break |
|||||||
10 | 1 |
METALS
|
Occurrence and extraction of sodium.
Occurrence and extraction of aluminium. |
By the end of the
lesson, the learner
should be able to:
Describe occurrence and extraction of sodium. |
Oral questions on electrolysis and equations at electrodes.
Brief discussion on occurrence and extraction. |
Chart: Down?s cell.
student book |
K.L.B. BK IV
Pages 170-171 |
|
10 | 2 |
METALS
|
Occurrence and extraction of iron.
|
By the end of the
lesson, the learner
should be able to:
Describe occurrence and extraction of iron. |
Brief discussion.
Write relevant chemical equations. |
Chart: Blast furnace.
|
K.L.B. BK IV
Pages 173-5 |
|
10 | 3-4 |
METALS
|
Occurrence and extraction of zinc.
Extraction of lead. |
By the end of the
lesson, the learner
should be able to:
Describe occurrence and extraction of zinc by electrolysis and reduction methods. Explain how lead is extracted. |
Brief discussion.
Write relevant chemical equations. Q/A & brief discussion. Write balanced chemical equations leading to extraction of lead. |
Flow chart: extraction of Zinc.
Flow chart: extraction of lead. |
K.L.B. BK IV
Pages 175-9 K.L.B. BK IV Pages 179-80 |
|
10 | 5 |
METALS
|
Occurrence and extraction of copper.
|
By the end of the
lesson, the learner
should be able to:
Describe extraction of copper. |
Q/A & brief discussion.
Write balanced chemical equations leading to extraction of copper. |
Flow chart: extraction of copper.
|
K.L.B. BK IV
Pages 181-183 |
|
11 | 1 |
METALS
|
Physical properties of some metals.
|
By the end of the
lesson, the learner
should be able to:
State general properties of metals. Explain the difference in physical properties of metals. |
Compare physical properties of some metals as summarized in a chart.
Q/A & discussion based on physical properties. |
student book
|
K.L.B. BK IV
Pages 183-4 |
|
11 | 2 |
METALS
|
Reaction of metals with oxygen.
|
By the end of the
lesson, the learner
should be able to:
Explain effect of burning metals in air. |
Teacher demonstration / Group experiments.
Burning some metals in air. Write relevant equations. Brief discussion. |
Common lab. metals.
|
K.L.B. BK IV
Pages 184-6 |
|
11 | 3-4 |
METALS
|
Reaction of metals with cold water and steam.
Reaction of metals with chlorine. |
By the end of the
lesson, the learner
should be able to:
Describe reaction of metals with cold water and steam. Arrange the metals in order of reactivity with cold water and steam. Describe the reaction of metals with chlorine. |
Class experiments:
Investigate reaction of some metals with cold water and steam. Analyse the results. Teacher demonstration in a fume cupboard / in the open. Investigate reaction of metals with chorine Write corresponding equations. |
Metals: Al, Zn, Fe, Cu.
Metals: Al, Zn, Fe, Cu. |
K.L.B. BK IV
Pages 186-9 K.L.B. BK IV Pages 189-191 |
|
11 | 5 |
METALS
|
Reaction of metals with acids.
|
By the end of the
lesson, the learner
should be able to:
Describe and explain reaction of metals with acids. |
Group experiments: investigate reaction of metals with dilute acids.
Teacher demonstration: investigate reaction of metals with concentrated acids. Discuss the observations made and write relevant chemical equations. |
Metals: Al, Zn, Fe, Cu.
Acids; HCl, HNO3, H2SO4. |
K.L.B. BK IV
Pages 191-4 |
|
12 | 1 |
METALS
|
Uses of metals.
|
By the end of the
lesson, the learner
should be able to:
State uses of some metals and alloys. |
Q/A & brief discussion;
Uses of Sodium, Aluminium, Zinc, Iron and Copper & some alloys. |
student book
|
K.L.B. BK IV
Pages 194-7 |
|
12 | 2 |
METALS
RADIOACTIVITY |
Environmental effects of extraction of metals.
Definition of radioactivity. |
By the end of the
lesson, the learner
should be able to:
Identify some environmental effects of extraction of metals. |
Oral questions and open discussion.
Assignment / Topic review. |
student book
|
K.L.B. BK IV
Pages 197-8 |
|
12 | 3-4 |
RADIOACTIVITY
|
Alpha particles.
Equations involving alpha particles. Beta particles. Gamma rays. Radioactive Half-Life. |
By the end of the
lesson, the learner
should be able to:
State properties of alpha particles. Describe methods of detecting alpha particles. State properties of beta particles. Define isotopes and isobars. Write down balanced equations involving both alpha and beta particles. State properties of gamma rays. |
Q/A: position of helium in the periodic table.
Expository approach: Q/A: Review isotopes. Expository approach: teacher briefly exposes new concepts. Examples of equations. Supervised practice. Assignment. |
student book
student book Dice. |
K.L.B. BK IV
Pages 251-253 |
|
12 | 5 |
RADIOACTIVITY
|
Radioactive decay curve.
Nuclear fusion and nuclear fission. Applications of radioactivity. |
By the end of the
lesson, the learner
should be able to:
Plot a radioactive decay curve to deduce the half ?life from the curve. |
Drawing a radioactive decay curve inferring the half-life of the sample from the graph.
|
Graph papers.
student book |
K.L.B. BK IV
Pages 254-5 |
|
13-14 |
End term exam and closing |
Your Name Comes Here