If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 |
Opener exam |
|||||||
2 | 2 |
Reflection and congruence
|
Symmetry
|
By the end of the
lesson, the learner
should be able to:
Find the lines of symmetry of shapes |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 46-47 Discovering secondary pg 32 |
|
2 | 3 |
Reflection and congruence
|
Reflection
Some general deductions using reflection |
By the end of the
lesson, the learner
should be able to:
Draw an image under reflection |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts Sets |
KLB Mathematics
Book Two Pg 48-50 Discovering secondary pg 33 |
|
2 | 4 |
Reflection and congruence
|
Some general deductions using reflection
Congruence Congruent triangles |
By the end of the
lesson, the learner
should be able to:
Deduce some general rules of reflection |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 57-59 Discovering secondary pg 37 |
|
2 | 5 |
Reflection and congruence
|
Congruent triangles
The ambiguous case |
By the end of the
lesson, the learner
should be able to:
Determine the congruent triangles |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 65-66 Discovering secondary pg 40 |
|
2 | 6 |
Rotation
|
Introduction
Centre of rotation |
By the end of the
lesson, the learner
should be able to:
Draw an image of an object under rotation |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 71-73 Discovering secondary pg 44 |
|
3 | 1 |
Rotation
|
Angle of rotation
Rotation in the Cartesian plane Rotation in the Cartesian plane |
By the end of the
lesson, the learner
should be able to:
Determine the angle of rotation |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 74-75 Discovering secondary pg 46 |
|
3 | 2 |
Rotation
|
Rotation in the Cartesian plane
Rotational symmetry of plane figures |
By the end of the
lesson, the learner
should be able to:
Rotate objects about the +180 |
Defining
Discussions Solving problem Explaining |
Sets
Books Videos Charts Apparatus |
KLB Mathematics
Book Two Pg 77 Discovering secondary pg 47 |
|
3 | 3 |
Rotation
Similarity and enlargement |
Rotational symmetry of solids
Rotation and congruence Similar figures |
By the end of the
lesson, the learner
should be able to:
Determine the lines of symmetry of solids |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 82-84 Discovering secondary pg 50 |
|
3 | 4 |
Similarity and enlargement
|
Similar figures
Enlargement |
By the end of the
lesson, the learner
should be able to:
Use ratio to calculate the lengths of similar figures |
Defining
Discussions Solving problem Explaining |
Sets
Books Videos Charts Apparatus |
KLB Mathematics
Book Two Pg 88-90 Discovering secondary pg 56 |
|
3 | 5 |
Similarity and enlargement
|
Enlarge objects
Linear scale factor Linear scale factor |
By the end of the
lesson, the learner
should be able to:
Draw the object and its image under enlargement |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 97-99 Discovering secondary pg 53 |
|
3 | 6 |
Similarity and enlargement
|
Negative scale factor
Positive and negative linear scale factor |
By the end of the
lesson, the learner
should be able to:
Find the negative scale factor |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts Sets |
KLB Mathematics
Book Two Pg 104 Discovering secondary pg 59 |
|
4 | 1 |
Similarity and enlargement
|
Area scale factor
Area of scale factor |
By the end of the
lesson, the learner
should be able to:
Determine the area scale factor |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 106-107 Discovering secondary pg 62 |
|
4 | 2 |
Similarity and enlargement
|
Volume scale factor
Area and volume scale factor |
By the end of the
lesson, the learner
should be able to:
Determine the volume scale factor |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 109-110 Discovering secondary pg 64 |
|
4 | 3 |
Trigonometry
|
Pythagoras Theorem
Solutions of problems Using Pythagoras Theorem |
By the end of the
lesson, the learner
should be able to:
Derive Pythagoras Theorem |
Deriving Pythagoras Theorem
|
Chalkboard Charts Illustrating derived theorem
Charts illustrating Pythagoras theorem |
KLB BK2 Pg 120 Discovering secondary pg 67
|
|
4 | 4 |
Trigonometry
|
Application to real life Situation
Trigonometry Tangent, sine and cosines Trigonometric Table |
By the end of the
lesson, the learner
should be able to:
Use the formula A = ?s(s-a)(s-b)(s-c) to solve problems in real life |
Solving problems in real life using the formula A = ?s(s-a)(s-b)(s-c)
|
Mathematical table
Charts illustrating tangent, sine and cosine |
KLB BK2 Pg 159 Discovering secondary pg 67
|
|
4 | 5 |
Trigonometry
|
Angles and sides of a right angled triangle
Establishing Relationship of sine and cosine of complimentary angles |
By the end of the
lesson, the learner
should be able to:
Use the sine, cosine and tangent in calculating the length of a right angled triangle and also finding the angle given two sides and unknown angle The length can be obtained if one side is given and an angle |
Using mathematical tables Finding the length using sine ratio Finding the length using Cosine and tangent ratio Finding the angle using Sine, cosine and tangent
|
Mathematical table Charts Chalkboard
Chalkboards |
KLB BK2 Pg 125, 139, 140 Discovering secondary pg
|
|
4 | 6 |
Trigonometry
|
Sines and cosines of Complimentary angles
Relationship between tangent, sine and cosine Trigonometric ratios of special angles 30, 45, 60 and 90 |
By the end of the
lesson, the learner
should be able to:
Use the relationship of sine and cosine of complimentary angles in solving problems |
Solving problems involving the sines and cosines of complimentary angles
|
Chalkboard Charts illustrating the relationship of sines and cosines of complimentary angles
Charts showing the three related trigonometric ratio Charts showing isosceles right angled triangle Charts illustrating Equilateral triangle |
KLB BK2 Pg 145
|
|
5 | 1 |
Trigonometry
|
Application of Trigonometric ratios in solving problems
Logarithms of Sines |
By the end of the
lesson, the learner
should be able to:
Solve trigonometric problems without using tables |
Solving trigonometric problems of special angles
|
Chalkboard
Chalkboard Mathematical tables |
KLB BK2 Pg 148
|
|
5 | 2 |
Trigonometry
|
Logarithms of cosines And tangents
Reading tables of logarithms of sines, cosines and tangents Application of trigonometry to real life situations |
By the end of the
lesson, the learner
should be able to:
Read the logarithm of cosines and tangents from mathematical tables |
Reading logarithms of cosine and tangent from mathematical table
|
Chalkboard Mathematical table
Mathematical table |
KLB BK2 Pg 150-152
|
|
5 | 3 |
Trigonometry
|
Area of a triangle Area of a triangle given the base and height (A = ? bh)
Area of a triangle using the formula (A = ? absin?) |
By the end of the
lesson, the learner
should be able to:
Calculate the are of a triangle given the base and height |
Calculating the area of a triangle given the base and height
|
Chart illustrating worked problem Chalkboard
Charts illustrating a triangle with two sides and an included angle Charts showing derived formula |
KLB BK2 Pg 155
|
|
5 | 4 |
Trigonometry
|
Area of a triangle using the formula A = ?s(s-a)(s-b)(s-c)
Area of Quadrilateral and Polygons Area of a square, rectangle, rhombus, parallelogram and trapezium |
By the end of the
lesson, the learner
should be able to:
Solve problems on the area of a triangle Given three sizes using the formula A = ?s(s-a)(s-b)(s-c) |
Solving problems on the area of triangle given three sides of a triangle
|
Charts illustrating a triangle with three sides Charts illustrating a worked example i.e. mathematical table
Charts illustrating formula used in calculating the areas of the quadrilateral |
KLB BK2 Pg 157-158
|
|
5 | 5 |
Trigonometry
|
Area of a kite
Area of other polygons (regular polygon) e.g. Pentagon Area of irregular Polygon |
By the end of the
lesson, the learner
should be able to:
Find the area of a kite |
Calculating the area of a Kite
|
Model of a kite
Mathematical table Charts illustrating Polygons Charts illustrating various irregular polygons Polygonal shapes |
KLB BK2 Pg 163
|
|
5 | 6 |
Trigonometry
|
Area of part of a circle Area of a sector (minor sector and a major sector)
Defining a segment of a circle Finding the area of a segment of a circle |
By the end of the
lesson, the learner
should be able to:
- Find the area of a sector given the angle and the radius of a minor sector Calculate the area of a major sector of a circle |
Finding the area of a minor and a major sector of a circle
|
Charts illustrating sectors
Chart illustrating a Segment |
KLB BK 2 Pg 167
|
|
6 | 1 |
Trigonometry
|
Area of a common region between two circles given the angles and the radii
Area of a common region between two circles given only the radii of the two circles and a common chord Surface area of solids Surface area of prisms Cylinder (ii) Triangular prism (iii) Hexagonal prism |
By the end of the
lesson, the learner
should be able to:
Find the area of common region between two circles given the angles ? Education Plus Agencies |
Calculating the area of a segment
|
Charts illustrating common region between the circles Use of a mathematical table during calculation
Charts illustrating common region between two intersecting circles Models of cylinder, triangular and hexagonal prisms |
KLB BK 2 Pg 175
|
|
6 | 2 |
Trigonometry
|
Area of a square based Pyramid
Surface area of a Rectangular based Pyramid |
By the end of the
lesson, the learner
should be able to:
Find the total surface area of a square based pyramid |
Finding the surface area of a square based pyramid
|
Models of a square based pyramid
Models of a Rectangular based pyramid |
KLB BK 2 Pg 178
|
|
6 | 3 |
Trigonometry
|
Surface area of a cone using the formula A = ?r2 + ?rl
Surface area of a frustrum of a cone and a pyramid Finding the surface area of a sphere |
By the end of the
lesson, the learner
should be able to:
Find the total surface area of the cone by first finding the area of the circular base and then the area of the curved surface |
Finding the area of the circular part Finding the area of the curved part Getting the total surface Area
|
Models of a cone
Models of frustrum of a cone and a pyramid Models of a sphere Charts illustrating formula for finding the surface area of a sphere |
KLB BK 2 Pg 181
|
|
6 | 4 |
Trigonometry
|
Surface area of a Hemispheres
Volume of Solids Volume of prism (triangular based prism) |
By the end of the
lesson, the learner
should be able to:
Find the surface area of a hemisphere |
Finding the surface area of a hemisphere
|
Models of a hemisphere
Models of a triangular based prism |
KLB BK 2 Pg 184
|
|
6 | 5 |
Trigonometry
|
Volume of prism (hexagonal based prism) given the sides and angle
Volume of a pyramid (square based and rectangular based) |
By the end of the
lesson, the learner
should be able to:
Find the volume of a hexagonal based prism |
Calculating the volume of an hexagonal prism
|
Models of hexagonal based prism
Models of square and Rectangular based Pyramids |
KLB BK 2 Pg 187
|
|
6 | 6 |
Trigonometry
|
Volume of a cone
Volume of a frustrum of a cone Volume of a frustrum of a pyramid |
By the end of the
lesson, the learner
should be able to:
Find the volume of a cone |
Finding the volume of a cone
|
Model of a cone
Models of a frustrum of a cone Models of frustrum of a pyramid |
KLB BK 2 Pg 191
|
|
7 | 1 |
Trigonometry
|
Volume of a sphere (v = 4/3?r3)
Volume of a Hemisphere {(v = ? (4/3?r3)} |
By the end of the
lesson, the learner
should be able to:
Find the volume of sphere given the radius of the sphere |
Finding the volume of a Sphere
|
Model of a sphere Mathematical table
Models of hemisphere |
KLB BK 2 Pg 195
|
|
7 | 2 |
Trigonometry
Trigonometric Ratios Trigonometric Ratios |
Application of area of triangles to real life
Tangent of an angle Tangent of an angle |
By the end of the
lesson, the learner
should be able to:
Use the knowledge of the area of triangles in solving problems in real life situation |
Solving problems in real life using the knowledge of the area of triangle
|
Mathematical table Chart illustrating formula used
Protractor Ruler Right corners Mathematical tables |
KLB BK 2 Pg 159
|
|
7 | 3 |
Trigonometric Ratios
|
Using tangents in calculations
Application of tangents |
By the end of the
lesson, the learner
should be able to:
calculate the size of an angle given two sides and an angle from tables |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
7 | 4 |
Trigonometric Ratios
|
The sine of an angle
The cosine of an angle Application of sine and cosine |
By the end of the
lesson, the learner
should be able to:
find the sine of an angle by calculations and through tables |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
7 | 5 |
Trigonometric Ratios
|
Complementary angles
Special angles |
By the end of the
lesson, the learner
should be able to:
define complementary angles. Work out sines of an angle given the cosine of its complimentary and vice versa |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
7 | 6 |
Trigonometric Ratios
|
Application of Special angles
Logarithms of sines, cosines and tangents |
By the end of the
lesson, the learner
should be able to:
apply the knowledge of special angles to solve problems |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
8 |
Mid term exam |
|||||||
9 |
Mid term |
|||||||
10 | 1 |
Trigonometric Ratios
|
Relationship between sin, cos and tan
Application to real life situation Problem solving |
By the end of the
lesson, the learner
should be able to:
relate sin, cos and tan that is tan?=sin? cos? Solve problems using the relationship |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
10 | 2 |
Area of A Triangle
|
Area =
Solve problems involving = |
By the end of the
lesson, the learner
should be able to:
derive the formula Area = |
Discussions
Drawing triangles Measuring lengths/angles Calculating area |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 155-157
|
|
10 | 3 |
Area of A Triangle
Area of Quadrilaterals |
A =?s(s-a) (s-b) (s-c)
Problem solving Area of parallelogram |
By the end of the
lesson, the learner
should be able to:
find the area of a triangle given the three sides |
Discussions
Drawing triangles Measuring lengths/angles Calculating area |
Protractor
Ruler Right corners Mathematical tables Parallelograms Trapeziums Polygons Squares/rectangles |
KLB Maths Bk2 Pg. 155-157
|
|
10 | 4 |
Area of Quadrilaterals
|
Area of Rhombus
Area of trapezium and kite |
By the end of the
lesson, the learner
should be able to:
find the area of a regular polygon. |
Drawing trapeziums/polygons
Measuring lengths/angles Reading mathematical tables Discussions |
Parallelograms
Trapeziums Polygons Squares/rectangles Mathematical tables |
KLB Maths Bk2 Pg. 161
|
|
10 | 5 |
Area of Quadrilaterals
Area of Part of a Circle |
Area of regular polygons
Problem solving Area of a sector |
By the end of the
lesson, the learner
should be able to:
find the area of a regular polygon by using the formula A= |
Drawing trapeziums/polygons
Measuring lengths/angles Reading mathematical tables Discussions |
Parallelograms
Trapeziums Polygons Squares/rectangles Mathematical tables Chalkboard illustrations Mathematical tables Circles Chart illustrating the area of a sector |
KLB Maths Bk2 Pg. 119-122
|
|
10 | 6 |
Area of Part of a Circle
|
Area of a segment
Common region between two circles |
By the end of the
lesson, the learner
should be able to:
find area of a segment |
Drawing circles
Measuring radii/diameters Measuring angles Calculating the area of a circle Discussions |
Circles
Chart illustrating the area of a minor segment |
KLB Maths Bk2 Pg. 167-169
|
|
11 | 1 |
Area of Part of a Circle
Surface Area of Solids |
Common region between two circles
Problem solving Surface area of prisms |
By the end of the
lesson, the learner
should be able to:
find the area of the common region between two circles and solve problems related to that |
Drawing circles
Measuring radii/diameters Measuring angles Calculating the area of a circle Discussions |
Circles
Chart illustrating the area of a minor segment Chart illustrating the area of a minor segment Chalkboard illustrations Prism Chalkboard illustrations |
KLB Maths Bk2 Pg. 167-169
|
|
11 | 2 |
Surface Area of Solids
|
Surface area of pyramid
Surface area of a cone |
By the end of the
lesson, the learner
should be able to:
find the surface area of a pyramid |
Drawing pyramids
Measuring lengths/ angles Opening pyramids to form nets Discussions Calculating area |
Pyramids with square base, rectangular base, triangular base
Cone |
KLB Maths Bk2 Pg. 178
|
|
11 | 3 |
Surface Area of Solids
|
Surface area of frustrum with circular base
Surface area of frustrum with square base |
By the end of the
lesson, the learner
should be able to:
find the surface area of frustrum with circular base |
Drawing cones/frustums
Making cones/frustums Measuring lengths/ angles Discussions |
Chart illustrating the surface area of a frustrum
Chart illustrating frustrum with a square base |
KLB Maths Bk2 Pg. 181-283
KLBMathematics Bk2 Discovering Secondary Mathematics Bk2 |
|
11 | 4 |
Surface Area of Solids
|
Surface area of frustrum with rectangular base
Surface area of spheres Problem solving |
By the end of the
lesson, the learner
should be able to:
find the surface area of frustrum with rectangular base |
Drawing cones/frustums
Making cones/frustums Measuring lengths/ angles Discussions |
Chart illustrating frustrum with a rectangular base
Chalkboard illustrations Past paper questions |
KLB Maths Bk2 Pg. 181-183
|
|
11 | 5 |
Volume of Solids
|
Volume of prism
Volume of pyramid |
By the end of the
lesson, the learner
should be able to:
find the volume of a prism |
Identifying prisms
Identifying the cross-sectional area Drawing/sketching prisms |
Prism
Pyramid |
KLB Maths Bk2 Pg. 186-188
|
|
11 | 6 |
Volume of Solids
|
Volume of a cone
Volume of a sphere Volume of frustrum |
By the end of the
lesson, the learner
should be able to:
find the volume of a cone |
Making cones/frustums
Opening cones/frustums to form nets |
Cone
Sphere Frustrum with circular base |
KLB Maths Bk2 Pg. 191
|
|
12 | 1 |
Volume of Solids
|
Volume of frustrum with a square base
Volume of frustrum with a rectangular base |
By the end of the
lesson, the learner
should be able to:
find the volume of a frustrum with a square base |
Making cones/frustums
Opening cones/frustums to form nets |
Frustrum with square base
Frustrum with rectangular base |
KLB Maths Bk2 Pg. 192-193
|
|
12 | 2 |
Volume of Solids
Quadratic Expressions and Equations |
Application to real life situation
Problem solving Expansion of Algebraic Expressions |
By the end of the
lesson, the learner
should be able to:
apply the knowledge of volume of solids to real life situations. |
Making cones/frustums
Opening cones/frustums to form nets |
Models of pyramids, prism, cones and spheres
Past paper questions Real-life experiences Worked out expressions |
KLB Maths Bk2 Pg. 193-194
|
|
12 | 3 |
Quadratic Expressions and Equations
|
Quadratic identities
Application of identities |
By the end of the
lesson, the learner
should be able to:
derive the three Algebraic identities |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 204-205
|
|
12 | 4 |
Quadratic Expressions and Equations
|
Factorise the Identities
Factorise other quadratic expressions |
By the end of the
lesson, the learner
should be able to:
factorise the identities |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions Chart illustrating factorization of a quadratic expression |
KLB Maths Bk2 Pg. 205-208
|
|
12 | 5 |
Quadratic Expressions and Equations
|
Factorisation of expressions of the form k2-9y2
Simplification of an expression by factorisation Solving quadratic equations |
By the end of the
lesson, the learner
should be able to:
factorise a difference of two squares |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 205-208
|
|
12 | 6 |
Quadratic Expressions and Equations
|
The formation of quadratic equations
Formation and solving of quadratic equations from word problems Solving on quadratic equations Forming quadratic equations from the roots |
By the end of the
lesson, the learner
should be able to:
form quadratic equations from information |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 208
|
Your Name Comes Here