If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 1 |
Opening exams |
|||||||
| 2 | 1 |
Reflection and congruence
|
Symmetry
|
By the end of the
lesson, the learner
should be able to:
Find the lines of symmetry of shapes |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 46-47 Discovering secondary pg 32 |
|
| 2 | 2 |
Reflection and congruence
|
Reflection
Some general deductions using reflection Some general deductions using reflection |
By the end of the
lesson, the learner
should be able to:
Draw an image under reflection |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts Sets |
KLB Mathematics
Book Two Pg 48-50 Discovering secondary pg 33 |
|
| 2 | 3 |
Reflection and congruence
|
Congruence
Congruent triangles Congruent triangles |
By the end of the
lesson, the learner
should be able to:
Determine shapes that are congruent |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 61-62 Discovering secondary pg 39 |
|
| 2 | 4 |
Reflection and congruence
Rotation Rotation |
The ambiguous case
Introduction Centre of rotation |
By the end of the
lesson, the learner
should be able to:
Determine the two angles that are congruent |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 67 Discovering secondary pg 41 |
|
| 2 | 5 |
Rotation
|
Angle of rotation
Rotation in the Cartesian plane Rotation in the Cartesian plane |
By the end of the
lesson, the learner
should be able to:
Determine the angle of rotation |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 74-75 Discovering secondary pg 46 |
|
| 2 | 6 |
Rotation
|
Rotation in the Cartesian plane
Rotational symmetry of plane figures Rotational symmetry of solids |
By the end of the
lesson, the learner
should be able to:
Rotate objects about the +180 |
Defining
Discussions Solving problem Explaining |
Sets
Books Videos Charts Apparatus |
KLB Mathematics
Book Two Pg 77 Discovering secondary pg 47 |
|
| 3 | 1 |
Rotation
Similarity and enlargement Similarity and enlargement |
Rotation and congruence
Similar figures Similar figures |
By the end of the
lesson, the learner
should be able to:
Determine the relationship between rotation and congruence |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts Sets |
KLB Mathematics
Book Two Pg 84 Discovering secondary pg 50 |
|
| 3 | 2 |
Similarity and enlargement
|
Enlargement
Enlarge objects Linear scale factor |
By the end of the
lesson, the learner
should be able to:
Enlarge an object |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 97 Discovering secondary pg 57 |
|
| 3 | 3 |
Similarity and enlargement
|
Linear scale factor
Negative scale factor Positive and negative linear scale factor |
By the end of the
lesson, the learner
should be able to:
Use the linear scale factor to find lengths |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts Sets |
KLB Mathematics
Book Two Pg 100-101 Discovering secondary pg 56 |
|
| 3 | 4 |
Similarity and enlargement
|
Area scale factor
Area of scale factor Volume scale factor |
By the end of the
lesson, the learner
should be able to:
Determine the area scale factor |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts |
KLB Mathematics
Book Two Pg 106-107 Discovering secondary pg 62 |
|
| 3 | 5 |
Similarity and enlargement
Trigonometry Trigonometry |
Volume scale factor
Area and volume scale factor Pythagoras Theorem Solutions of problems Using Pythagoras Theorem |
By the end of the
lesson, the learner
should be able to:
Use volume scale factor to solve problems |
Defining
Discussions Solving problem Explaining |
Apparatus
Books Videos Charts Chalkboard Charts Illustrating derived theorem Charts illustrating Pythagoras theorem |
KLB Mathematics
Book Two Pg 110-111 Discovering secondary pg 64 |
|
| 3 | 6 |
Trigonometry
|
Application to real life Situation
Trigonometry Tangent, sine and cosines Trigonometric Table |
By the end of the
lesson, the learner
should be able to:
Use the formula A = ?s(s-a)(s-b)(s-c) to solve problems in real life |
Solving problems in real life using the formula A = ?s(s-a)(s-b)(s-c)
|
Mathematical table
Charts illustrating tangent, sine and cosine |
KLB BK2 Pg 159 Discovering secondary pg 67
|
|
| 4 | 1 |
Trigonometry
|
Angles and sides of a right angled triangle
Establishing Relationship of sine and cosine of complimentary angles Sines and cosines of Complimentary angles |
By the end of the
lesson, the learner
should be able to:
Use the sine, cosine and tangent in calculating the length of a right angled triangle and also finding the angle given two sides and unknown angle The length can be obtained if one side is given and an angle |
Using mathematical tables Finding the length using sine ratio Finding the length using Cosine and tangent ratio Finding the angle using Sine, cosine and tangent
|
Mathematical table Charts Chalkboard
Chalkboards Chalkboard Charts illustrating the relationship of sines and cosines of complimentary angles |
KLB BK2 Pg 125, 139, 140 Discovering secondary pg
|
|
| 4 | 2 |
Trigonometry
|
Relationship between tangent, sine and cosine
Trigonometric ratios of special angles 30, 45, 60 and 90 Application of Trigonometric ratios in solving problems |
By the end of the
lesson, the learner
should be able to:
Relate the three trigonometric ratios, the sine, cosine and tangent |
Relating the three trigonometric ratios
|
Charts showing the three related trigonometric ratio
Charts showing isosceles right angled triangle Charts illustrating Equilateral triangle Chalkboard |
KLB BK2 Pg 145
|
|
| 4 | 3 |
Trigonometry
|
Logarithms of Sines
Logarithms of cosines And tangents Reading tables of logarithms of sines, cosines and tangents |
By the end of the
lesson, the learner
should be able to:
Read the logarithms of sines |
Solving problems by reading logarithm table of sines
|
Chalkboard Mathematical tables
Chalkboard Mathematical table |
KLB BK2 Pg 149
|
|
| 4 | 4 |
Trigonometry
|
Application of trigonometry to real life situations
Area of a triangle Area of a triangle given the base and height (A = ? bh) Area of a triangle using the formula (A = ? absin?) |
By the end of the
lesson, the learner
should be able to:
Solve problems in real life using trigonometry |
Solving problems using trigonometry in real life
|
Mathematical table
Chart illustrating worked problem Chalkboard Charts illustrating a triangle with two sides and an included angle Charts showing derived formula |
KLB BK2 Pg 153-154
|
|
| 4 | 5 |
Trigonometry
|
Area of a triangle using the formula A = ?s(s-a)(s-b)(s-c)
Area of Quadrilateral and Polygons Area of a square, rectangle, rhombus, parallelogram and trapezium Area of a kite |
By the end of the
lesson, the learner
should be able to:
Solve problems on the area of a triangle Given three sizes using the formula A = ?s(s-a)(s-b)(s-c) |
Solving problems on the area of triangle given three sides of a triangle
|
Charts illustrating a triangle with three sides Charts illustrating a worked example i.e. mathematical table
Charts illustrating formula used in calculating the areas of the quadrilateral Model of a kite |
KLB BK2 Pg 157-158
|
|
| 4 | 6 |
Trigonometry
|
Area of other polygons (regular polygon) e.g. Pentagon
Area of irregular Polygon Area of part of a circle Area of a sector (minor sector and a major sector) |
By the end of the
lesson, the learner
should be able to:
Find the area of a regular polygon |
Calculating the area of a regular polygon
|
Mathematical table Charts illustrating Polygons
Charts illustrating various irregular polygons Polygonal shapes Charts illustrating sectors |
KLB BK2 Pg 164
|
|
| 5 | 1 |
Trigonometry
|
Defining a segment of a circle Finding the area of a segment of a circle
Area of a common region between two circles given the angles and the radii Area of a common region between two circles given only the radii of the two circles and a common chord |
By the end of the
lesson, the learner
should be able to:
- Define what a segment of a circle is - Find the area of a segment of a circle |
Finding the area of a segment by first finding the area of a sector less the area of a smaller sector given R and r and angle ?
|
Chart illustrating a Segment
Charts illustrating common region between the circles Use of a mathematical table during calculation Charts illustrating common region between two intersecting circles |
KLB BK2 Pg 169-170
|
|
| 5 | 2 |
Trigonometry
|
Surface area of solids Surface area of prisms Cylinder (ii) Triangular prism (iii) Hexagonal prism
Area of a square based Pyramid Surface area of a Rectangular based Pyramid |
By the end of the
lesson, the learner
should be able to:
Define prism and hence be in a position of calculating the surface area of some prisms like cylinder, triangular prism and hexagonal prism |
Defining a prism Calculating the surface area of the prisms
|
Models of cylinder, triangular and hexagonal prisms
Models of a square based pyramid Models of a Rectangular based pyramid |
KLB BK 2 Pg 177
|
|
| 5 | 3 |
Trigonometry
|
Surface area of a cone using the formula A = ?r2 + ?rl
Surface area of a frustrum of a cone and a pyramid Finding the surface area of a sphere |
By the end of the
lesson, the learner
should be able to:
Find the total surface area of the cone by first finding the area of the circular base and then the area of the curved surface |
Finding the area of the circular part Finding the area of the curved part Getting the total surface Area
|
Models of a cone
Models of frustrum of a cone and a pyramid Models of a sphere Charts illustrating formula for finding the surface area of a sphere |
KLB BK 2 Pg 181
|
|
| 5 | 4 |
Trigonometry
|
Surface area of a Hemispheres
Volume of Solids Volume of prism (triangular based prism) Volume of prism (hexagonal based prism) given the sides and angle |
By the end of the
lesson, the learner
should be able to:
Find the surface area of a hemisphere |
Finding the surface area of a hemisphere
|
Models of a hemisphere
Models of a triangular based prism Models of hexagonal based prism |
KLB BK 2 Pg 184
|
|
| 5 | 5 |
Trigonometry
|
Volume of a pyramid (square based and rectangular based)
Volume of a cone Volume of a frustrum of a cone |
By the end of the
lesson, the learner
should be able to:
Find the volume of a square based pyramid and rectangular based pyramid |
Finding the surface area of the base Applying the formula V=?x base area x height to get the volume of the pyramids (square and rectangular based)
|
Models of square and Rectangular based Pyramids
Model of a cone Models of a frustrum of a cone |
KLB BK 2 Pg 189-190
|
|
| 5 | 6 |
Trigonometry
|
Volume of a frustrum of a pyramid
Volume of a sphere (v = 4/3?r3) Volume of a Hemisphere {(v = ? (4/3?r3)} |
By the end of the
lesson, the learner
should be able to:
Find the volume of a frustrum of a Pyramid |
Finding volume of a full pyramid Finding volume of cutoff pyramid Find volume of the remaining fig (frustrum) by subtracting i.e. Vf = (V ? v)
|
Models of frustrum of a pyramid
Model of a sphere Mathematical table Models of hemisphere |
KLB BK 2 Pg 194
|
|
| 6 | 1 |
Trigonometry
Trigonometric Ratios Trigonometric Ratios |
Application of area of triangles to real life
Tangent of an angle Tangent of an angle |
By the end of the
lesson, the learner
should be able to:
Use the knowledge of the area of triangles in solving problems in real life situation |
Solving problems in real life using the knowledge of the area of triangle
|
Mathematical table Chart illustrating formula used
Protractor Ruler Right corners Mathematical tables |
KLB BK 2 Pg 159
|
|
| 6 | 2 |
Trigonometric Ratios
|
Using tangents in calculations
Application of tangents The sine of an angle |
By the end of the
lesson, the learner
should be able to:
calculate the size of an angle given two sides and an angle from tables |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
| 6 | 3 |
Trigonometric Ratios
|
The cosine of an angle
Application of sine and cosine Complementary angles |
By the end of the
lesson, the learner
should be able to:
find the cosine of an angle by calculations and through tables |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
| 6 | 4 |
Trigonometric Ratios
|
Special angles
Application of Special angles Logarithms of sines, cosines and tangents |
By the end of the
lesson, the learner
should be able to:
find the sine, cos, and tan of 300,600,450,00,900, without using tables |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
| 6 | 5 |
Trigonometric Ratios
|
Relationship between sin, cos and tan
Application to real life situation Problem solving |
By the end of the
lesson, the learner
should be able to:
relate sin, cos and tan that is tan?=sin? cos? Solve problems using the relationship |
Measuring lengths/angles
Dividing numbers Drawing right angles Reading mathematical tables |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 119-122
|
|
| 6 | 6 |
Area of A Triangle
|
Area =
Solve problems involving = A =?s(s-a) (s-b) (s-c) |
By the end of the
lesson, the learner
should be able to:
derive the formula Area = |
Discussions
Drawing triangles Measuring lengths/angles Calculating area |
Protractor
Ruler Right corners Mathematical tables |
KLB Maths Bk2 Pg. 155-157
|
|
| 7 | 1 |
Area of A Triangle
Area of Quadrilaterals Area of Quadrilaterals Area of Quadrilaterals |
Problem solving
Area of parallelogram Area of Rhombus Area of trapezium and kite |
By the end of the
lesson, the learner
should be able to:
solve problems on area of a triangle given the three sides |
Discussions
Drawing triangles Measuring lengths/angles Calculating area |
Protractor
Ruler Right corners Mathematical tables Parallelograms Trapeziums Polygons Squares/rectangles |
KLB Maths Bk2 Pg. 155-157
|
|
| 7 | 2 |
Area of Quadrilaterals
Area of Part of a Circle |
Area of regular polygons
Problem solving Area of a sector |
By the end of the
lesson, the learner
should be able to:
find the area of a regular polygon by using the formula A= |
Drawing trapeziums/polygons
Measuring lengths/angles Reading mathematical tables Discussions |
Parallelograms
Trapeziums Polygons Squares/rectangles Mathematical tables Chalkboard illustrations Mathematical tables Circles Chart illustrating the area of a sector |
KLB Maths Bk2 Pg. 119-122
|
|
| 7 | 3 |
Area of Part of a Circle
|
Area of a segment
Common region between two circles Common region between two circles |
By the end of the
lesson, the learner
should be able to:
find area of a segment |
Drawing circles
Measuring radii/diameters Measuring angles Calculating the area of a circle Discussions |
Circles
Chart illustrating the area of a minor segment |
KLB Maths Bk2 Pg. 167-169
|
|
| 7 | 4 |
Area of Part of a Circle
Surface Area of Solids Surface Area of Solids |
Problem solving
Surface area of prisms Surface area of pyramid |
By the end of the
lesson, the learner
should be able to:
solve problems involving the area of part of a circle |
Drawing circles
Measuring radii/diameters Measuring angles Calculating the area of a circle Discussions |
Circles
Chart illustrating the area of a minor segment Chalkboard illustrations Prism Chalkboard illustrations Pyramids with square base, rectangular base, triangular base |
KLB Maths Bk2 Pg. 167-169
|
|
| 7 | 5 |
Surface Area of Solids
|
Surface area of a cone
Surface area of frustrum with circular base Surface area of frustrum with square base |
By the end of the
lesson, the learner
should be able to:
find the surface area of a cone |
Drawing cones/frustums
Making cones/frustums Measuring lengths/ angles Discussions |
Cone
Chart illustrating the surface area of a frustrum Chart illustrating frustrum with a square base |
KLB Maths Bk2 Pg. 180
KLBMathematics Bk2 Discovering Secondary Mathematics Bk2 |
|
| 7 | 6 |
Surface Area of Solids
|
Surface area of frustrum with rectangular base
Surface area of spheres Problem solving |
By the end of the
lesson, the learner
should be able to:
find the surface area of frustrum with rectangular base |
Drawing cones/frustums
Making cones/frustums Measuring lengths/ angles Discussions |
Chart illustrating frustrum with a rectangular base
Chalkboard illustrations Past paper questions |
KLB Maths Bk2 Pg. 181-183
|
|
| 8 | 1 |
Volume of Solids
|
Volume of prism
Volume of pyramid Volume of a cone |
By the end of the
lesson, the learner
should be able to:
find the volume of a prism |
Identifying prisms
Identifying the cross-sectional area Drawing/sketching prisms |
Prism
Pyramid Cone |
KLB Maths Bk2 Pg. 186-188
|
|
| 8 | 2 |
Volume of Solids
|
Volume of a sphere
Volume of frustrum Volume of frustrum with a square base |
By the end of the
lesson, the learner
should be able to:
find the volume of a sphere |
Identifying spheres
Sketching spheres Measuring radii/ diameters Discussions |
Sphere
Frustrum with circular base Frustrum with square base |
KLB Maths Bk2 Pg. 195
|
|
| 8 | 3 |
Volume of Solids
|
Volume of frustrum with a rectangular base
Application to real life situation Problem solving |
By the end of the
lesson, the learner
should be able to:
find the volume of a frustrum with a rectangular base |
Making cones/frustums
Opening cones/frustums to form nets |
Frustrum with rectangular base
Models of pyramids, prism, cones and spheres Past paper questions |
KLB Maths Bk2 Pg. 192-193
|
|
| 8 | 4 |
Quadratic Expressions and Equations
|
Expansion of Algebraic Expressions
Quadratic identities Application of identities |
By the end of the
lesson, the learner
should be able to:
expand algebraic expressions |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 203
|
|
| 8 | 5 |
Quadratic Expressions and Equations
|
Factorise the Identities
Factorise other quadratic expressions Factorisation of expressions of the form k2-9y2 |
By the end of the
lesson, the learner
should be able to:
factorise the identities |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions Chart illustrating factorization of a quadratic expression |
KLB Maths Bk2 Pg. 205-208
|
|
| 8 | 6 |
Quadratic Expressions and Equations
|
Simplification of an expression by factorisation
Solving quadratic equations The formation of quadratic equations |
By the end of the
lesson, the learner
should be able to:
simplify a quadratic expression by factorisation |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 205-208
|
|
| 9-10 |
Midterm |
|||||||
| 10 | 2 |
Quadratic Expressions and Equations
|
Formation and solving of quadratic equations from word problems
Solving on quadratic equations Forming quadratic equations from the roots |
By the end of the
lesson, the learner
should be able to:
form and solve quadratic equations from word problems |
Discussions
Multiplying numbers Dividing numbers Adding numbers Subtracting numbers Exercises |
Real-life experiences
Worked out expressions |
KLB Maths Bk2 Pg. 208-210
|
|
| 10 | 3 |
Linear Inequalities
|
Inequalities symbols
Number line Inequalities in one unknown |
By the end of the
lesson, the learner
should be able to:
identify and use inequality symbols |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines
Graph papers Square boards Negative and positive numbers Negative and positive numbers |
KLB Maths Bk2 Pg. 213-224
|
|
| 10 | 4 |
Linear Inequalities
|
Graphical representation
Graphical solutions of simultaneous linear inequalities Graphical solutions of simultaneous linear inequalities |
By the end of the
lesson, the learner
should be able to:
represent linear inequalities in one unknown graphically |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines Graph papers
Square boards Negative and positive numbers Number lines Graph papers |
KLB Maths Bk2 Pg. 213-224
|
|
| 10 | 5 |
Linear Inequalities
|
Area of the wanted region
Inequalities from inequality graphs Problem solving. |
By the end of the
lesson, the learner
should be able to:
calculate the area of the wanted region |
Drawing graphs of
inequalities Determining the scale of a graph Shading unwanted regions Discussions |
Number lines
Graph papers Square boards Negative and positive numbers |
KLB Maths Bk2 Pg. 213-224
|
|
| 10 | 6 |
Linear Motion
|
Displacement, velocity, speed and acceleration
Distinguishing terms Distinguishing velocity and acceleration |
By the end of the
lesson, the learner
should be able to:
Define displacement, speed velocity and acceleration |
Teacher/pupil discussion
Plotting graphs Drawing graphs |
Graph papers
Stones Pieces of paper |
KLB Maths Bk2 Pg. 228-238
|
|
| 11 | 1 |
Linear Motion
|
Distance time graphs
Interpret the velocity time graph Interpreting graphs |
By the end of the
lesson, the learner
should be able to:
plot and draw the distance time graphs |
Plotting graphs
Drawing graphs |
Graph papers
Stones Pieces of paper Drawn graphs |
KLB Maths Bk2 Pg. 228-238
|
|
| 11 | 2 |
Linear Motion
Statistics |
Relative speed (objects moving in the same direction)
Problem solving Definition |
By the end of the
lesson, the learner
should be able to:
solve problems on objects moving in different directions |
Teacher/pupil discussion
|
Real life situation
Chalkboard illustrations Past paper questions Weighing balance Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB
Maths Bk2 Pg.329 |
|
| 11 | 3 |
Statistics
|
Collection and organization of data
Frequency tables Grouped data Mean of ungrouped data |
By the end of the
lesson, the learner
should be able to:
collect and organize data |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB Maths Bk2 Pg. 241-252
|
|
| 11 | 4 |
Statistics
|
Median of ungrouped data
Mean of ungrouped data Median of a grouped data modal class |
By the end of the
lesson, the learner
should be able to:
calculate the median of ungrouped data and state the mode |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB Maths Bk2 Pg. 241-252
|
|
| 11 | 5 |
Statistics
|
Data
Representation.
Line graphs
Bar graphs Pictogram |
By the end of the
lesson, the learner
should be able to:
represent data in form of a line graph |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers Pictures which are whole, half, quarter |
KLB Maths Bk2 Pg. 241-252
|
|
| 11 | 6 |
Statistics
|
Histograms
Frequency polygons Histograms with uneven distribution |
By the end of the
lesson, the learner
should be able to:
represent data in form of histograms |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers Histograms drawn. Data Data with uneven classes |
KLB Maths Bk2 Pg. 241-252
|
|
| 12 | 1 |
Statistics
Angle Properties of a Circle |
Interpretation of data
Problem solving Arc chord segment |
By the end of the
lesson, the learner
should be able to:
interpret data from real life situation |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Real life situations
Past paper questions Chart illustrating arc chord and segment |
KLB Maths Bk2 Pg. 241-252
|
|
| 12 | 2 |
Angle Properties of a Circle
|
Angles subtended by the same arc in the same segment
Angle at the centre and at the circumference Angles subtended by the diameter at the circumference |
By the end of the
lesson, the learner
should be able to:
relate and compute angles subtended by an arc of a circle at the circumference |
Discussions
Drawing circles Measuring radii/diameters/angles Identifying the parts of a circle |
Chart illustrating Angles subtended by the same arc in same segment are equal
Chart illustrating Angles subtended at the centre by an arc and one subtended at the circumference Circles showing the different parts |
KLB Maths Bk2 Pg. 264-278
|
|
| 12 | 3 |
Angle Properties of a Circle
|
Cyclic quadrilateral
Exterior angle property |
By the end of the
lesson, the learner
should be able to:
state the angle properties of a cyclic quadrilateral |
Discussions
Drawing circles Measuring radii/diameters/angles Identifying the parts of a circle |
Circles showing the
different parts |
KLB Maths Bk2 Pg. 264-278
|
|
| 12 | 4 |
Angle Properties of a Circle
Vectors |
Problem solving
Problem solving Definition and Representation of vectors |
By the end of the
lesson, the learner
should be able to:
solve problems on angle properties of a circle |
Discussions
Drawing circles Measuring radii/diameters/angles Identifying the parts of a circle |
Circles showing the
different parts Past paper questions different parts Past paper questions 1x2 matrices Graph papers Square boards Ruler |
KLB Maths Bk2 Pg. 264-278
|
|
| 12 | 5 |
Vectors
|
Equivalent vectors
Addition of vectors Multiplication of vectors |
By the end of the
lesson, the learner
should be able to:
identify equivalent vectors |
Writing position vectors
Adding/subtracting numbers Squaring and getting the square root of numbers |
1x2 matrices
Graph papers Square boards Ruler |
KLB Maths Bk2 Pg. 285
|
|
| 12 | 6 |
Vectors
|
Position vectors
Column vector Magnitude of a vector Mid - point Translation vector |
By the end of the
lesson, the learner
should be able to:
define a position vector illustrate position vectors on a Cartesian plane |
Writing position vectors
Adding/subtracting numbers Squaring and getting the square root of numbers |
1x2 matrices
Graph papers Square boards Ruler |
KLB Maths Bk2 Pg.298
|
|
| 13-17 |
August holiday |
|||||||
Your Name Comes Here